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Preface

Pathogen attack has been one of the chief constrains that reduce crop productivity 
worldwide. Plants have established sophisticated mechanisms to counter and accli-
matize over these invading pathogens at physiological, biochemical as well as 
molecular levels. Due to severe crop losses by pathogen outbreak, it is mandatory to 
completely understand the resistance/defense mechanisms against pathogen and 
develop advanced tactics to improve biotic stress tolerance in crop plants.

We present this book with an objective to realize the plant defense against differ-
ent pathogens better and to document fundamentals as well as recent findings. This 
book has an amalgamation of basic information about disease resistance along with 
current insights into plant-pathogen interaction. The book has 15 chapters to dis-
seminate the most updated information and detailed overviews on the present 
knowledge on molecular aspects of plant responses and adaptation to biotic stresses. 
This book is an essential reading for researchers and professionals in plant pathol-
ogy, cell biology, molecular biology and genetics. This is highly recommended for 
the ones who are involved in plant disease resistance and crop improvement and to 
all plant scientists and undergraduates.

Depending on their modes of nutrition, phytopathogens have been categorized as 
necrotrophs, biotrophs and hemibiotrophs. These pathogens can be bacterial and fun-
gal and cause various diseases in plants. In addition, viruses are another important 
class of pathogens and are causal agents for many common plant diseases. Plants 
counter to pathogens by activating a cascade of genes, encoding different receptors, 
signaling and protective molecules. During biotic stress, first of all effector mole-
cules i.e. pathogen-associated molecular patterns (PAMPs) are perceived by plant 
recognition receptors (PRRs), after which PRRs interact with additional trans-mem-
brane proteins that act as signaling adapters or amplifiers to achieve full functionality 
and PAMP triggered immunity (PTI). Defense response by receptor- like protein is a 
complex strategy, characterized by specific interaction between disease resistance 
(R) genes of plants and corresponding avirulence (avr) genes of pathogen that induce 
effector-triggered immunity (ETI) through hypersensitive response.

The NBS-LRR genes are important class of resistance gene families and their 
products recognize factors secreted by pathogens, which activates downstream sig-
naling pathways leading to defense. Mitogen-activated protein kinases (MAPKs), 
which are cell-signaling enzymes that also show vital functions in transmitting 
extracellular signals to the nucleus during biotic stress. To achieve defense against 
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pathogen, transcription factors such as WRKY transcription factors bind to plant- 
specific cis-regulatory elements and activate gene expression thereby inducing tran-
scriptional reprogramming and proteomic alterations to coordinate the perception 
and activation of pathways specific to the type of pathogen in question. Mainly 
phytohormones, small RNAs and other factors regulate this change at transcript 
level and protein level. Amongst all the targets, the induction and accumulation of 
pathogenesis-related (PR) proteins and biosynthesis of secondary metabolites are 
an integral component of innate immune responses in plants during pathogen attack.

Overall this volume will convey an overview of plant-pathogen interactions   
and it is a must read to understand this process for the genetic improvement of crops 
for disease resistance.

We are obliged to the authors of various chapters of this book for writing their 
chapters methodically and with great responsibility. We are extremely thankful to 
Dr. Rama, Principal, Hans Raj College, University of Delhi and Dr. Ajay Arora, 
Principal, Deshbandhu College, University of Delhi for providing overall support 
for our research and academic pursuits. We would also like to convey our gratitude 
to Dr. V. K. Kawatra, Mr. P. K. Singh and Dr. Vijay Rani Rajpal for always motivat-
ing us. We appreciate the beautiful ambiance created by our little angels Saumya 
and Kimaya, which allowed us to work tirelessly and gave us all emotional support. 
We are grateful to our parents for their constant support and blessings. Last but not 
the least, our sincere thanks to the handling editors and publisher.

We are optimistic that this book will be effective in broadcasting the latest knowl-
edge about the plant-pathogen interaction.

New Delhi, India Archana Singh 
  Indrakant K. Singh 
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Abstract
Arabidopsis thaliana (a crucifer) provides a model system in every discipline of 
plant sciences including plant pathology with a varied array of molecular and 
genetic resources and biological information. Members of crucifer are widely 
distributed geographically and are well adapted to various plant pathogens such 
as fungi, bacteria, viruses, and nematodes. Besides small plant size, short life 
cycle, small genome size, availability of whole genome sequence, and easy 
genetic and mutational analysis, its response to the pathogen attack in a similar 
fashion as other higher plant species and an extensive collection of mutants avail-
able to determine defense pathway are the characteristics, which identify this 
plant as an indispensable research model in plant-pathogen interaction studies. 
This chapter mainly focuses on various existing model pathosystems of 
Arabidopsis with viral, bacterial, and fungal pathogens including an outlook on 
how this knowledge can be translated from Arabidopsis-pathogen model system 
to other crop plants. A general and brief overview of plant-pathogen interactions 
and how A. thaliana recognize and respond to pathogens is also portrayed.

Keywords
Effector molecules · Hypersensitive response (HR) · Plant defense · Plant 
defensin gene · PR proteins · Resistance genes · Signal molecules · Systemic 
acquired resistance (SAR)
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1.1  Introduction

When a pathogen attacks a plant, either a pathogen can proliferate and can cause 
development of disease or the plant can resist the pathogen by means of active or pas-
sive form of resistance. During resistance, plants recognize a race-specific avirulence 
determinant produced by the pathogen (Keen 1990; Scofield et al. 1996; Tang et al. 
1996); defense mechanisms are activated leading to hypersensitive response (HR) 
(Matthews 1991). At the same time, expressions of pathogenesis-related (PR) proteins 
as well as plant defensins are induced due to gene-for-gene interactions and rapid 
localized cell death (Narasimhan et al. 2001; Asano et al. 2012). Signaling molecules, 
salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and reactive oxygen species 
(ROS) are directly involved in plant defense against pathogens (Clarke et al. 2000; 
Kunkel and Brooks 2002; Hossain et al. 2007; Asano et al. 2012). There is rich infor-
mation on plant-pathogen interaction on many species. Advanced molecular tools are 
also accessible that can be used to study the function and evolution of genes that are 
important for plant defense such as those that control responses to wide range of 
pathogens. However, studies in molecular plant pathology require large initial invest-
ments in molecular technologies. It is cost-effective since these investments are shared 
among multiple laboratories by means of publications, bioinformatic tools, and data-
bases such as TAIR. Moreover, researchers gain in-depth biological understanding 
when they compare and match previous studies from a research community that 
shares the tools and resources of model organisms. Although, it is imperative to study 
individual plant-pathogen interactions at species level to gain better knowledge. But, 
at the same time, A. thaliana serves as a model system to answer many basic questions 
related to plant-pathogen interaction due to availability of complete genome sequence 
and having a small genome size together with the extensive collection of new mutants 
and germplasm as well as the presence of specialized transformation techniques, its 
rapid growth, can be handled easily in the laboratory conditions, mutagenesis can also 
be done easily and the possibility of using microarrays for gene expression analysis. 
Arabidopsis is susceptible to only a limited number of pathogens including viruses, 
bacteria, fungi, nematodes, and insect pests, and it responds to the pathogen attack in 
a similar fashion to those of other higher plant species.

A. thaliana (L.) Heynh. is an annual flowering plant that belongs to mustard fam-
ily (Cruciferae or Brassicaceae). It is a native of Eurasia, which has a broad natural 
distribution throughout Europe, Asia, and North America. Of late it has been intro-
duced and naturalized worldwide. It is speculated that its spread was facilitated by 
the expansion of agriculture (Francois et al. 2008). A. thaliana is considered as a 
weed as it grows in open or recently disturbed habitats. Arabidopsis shows exten-
sive natural variation for different developmental, abiotic, and biotic stress resis-
tance traits (Koornneef et al. 2004; Alonso-Blanco et al. 2009; Atwell et al. 2010). 
Till date, over 750 different ecotypes (accessions) of A. thaliana have been collected 
from natural populations that are available for experimental analyses. The most 
commonly used ecotypes of Arabidopsis for genetic and molecular studies are 
Columbia (Col) and Landsberg erecta (Ler). The entire life cycle of A. thaliana is 
completed in 6 weeks, which includes seed germination, rosette formation, bolting, 
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flowering, and maturation of seeds. The plant is a small-sized herb with overall 
length of around 15–20 cm; leaves are 1.5–5 cm long and 2–10 mm broad. Flowers 
(2 mm length and 3 mm diameter) undergo self-pollination but can be crossed man-
ually. The fruit is called a silique (5–20 mm long) that contains 20–30 seeds. On 
germination, the seed develops into a rosette plant (2–10 cm diameter), wherein the 
whorls of leaves are covered with trichomes (Fig. 1.1). Under laboratory conditions 
Arabidopsis can be grown easily in petri plates, pots, or hydroponics, either under 
fluorescent lights or in a greenhouse. Inflorescence is a corymb that appears as a 
result of bolting after 3 weeks of planting. Several hundred siliques are produced 
per plant, which account for more than 5000 total seeds. The plant has a single pri-
mary root that grows vertically downward and produces smaller lateral roots that are 
easy to study in culture.

1.2  Plant-Pathogen Interactions

An array of pathogens including fungi, bacteria, and viruses attack the plant king-
dom. Different strategies have been devised by different pathogens to invade, feed 
on, and reproduce in the host plants. Pathogens can be broadly classified as biotrophs 
and necrotrophs based upon the strategy used by them to invade and infect a plant 
(Oliver and Ipcho 2004). Biotrophic pathogens are those that require a living host 
tissue for its growth and reproduction. In some cases wherein the tissue dies in the 
later stages of the infection, the pathogens are classified as hemibiotrophs. On the 

Fig. 1.1 An Arabidopsis 
plant grown under 
laboratory condition
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contrary, necrotrophic pathogens kill the host tissue as soon as they infect it and then 
grow and feed on the dead tissue. Viruses are classified as biotrophic pathogens, 
whereas bacteria and fungi follow both biotrophic as well as necrotrophic strategies 
of invasion. Plants respond to different kinds of pathogens differently. Pathogens can 
further be classified as those with different primary target tissues encountering differ-
ent environmental conditions. Those pathogens that target the green, photosynthesiz-
ing, and assimilate-producing source tissues like leaves will encounter different 
kinds of defense responses in comparison to pathogens infecting the assimilate-
importing tissue such as roots, flowers, and sink leaves (Berger et al. 2007).

Plant defense mechanism against pathogens can be either preformed (primary) 
or induced (secondary). The first and foremost step required for the activation of 
defense response is to recognize the presence of microorganisms. Elicitors are mol-
ecules that at very low concentrations induce plant defense response (Thakur and 
Sohal 2013). Recognition of microorganism-derived elicitors initiates the basal 
resistance in plants. This defense response involves activation of ion fluxes, phos-
phorylation/dephosphorylation of proteins by protein kinases and phosphatases, 
and production of signaling molecules such as adapter proteins, salicylic acid, jas-
monic acid, ethylene, reactive oxygen species, and nitric oxide. These steps further 
initiate an array of signaling that leads to the regulation of expression of defense- 
related genes and the induction of defense responses. These responses include cell 
wall strengthening, accumulation of phytoalexins and pathogenesis-related (PR) 
proteins, and localized programmed cell death (PCD) (McDowell and Dangl 2000; 
Dangl and Jones 2001; Garcia-Brugger et al. 2006).

Plants also possess an innate immune system that perceives the presence of 
pathogens by recognition of molecules known as microbe- or pathogen-associated 
molecular patterns (MAMPs or PAMPs, respectively) or by sensing effector pro-
teins secreted by the host during plant-pathogen interactions. Early interactions 
between PAMPs/MAMPs and cell surface receptors (pathogen recognition recep-
tors or PRRs) lead to appropriate defenses by activating multicomponent and mul-
tilayered responses. The establishment of defense is triggered by several pathways 
that can involve Ca2+ influx, generation of reactive oxygen and nitrogen species 
(ROS and RNS, respectively), and synthesis of phytohormones such as jasmonic 
acid (JA), salicylic acid (SA), and ethylene (ET), which act as signal molecules 
(Pieterse et al. 2009). Plant immunity may be described at two levels (Jones and 
Dangl 2006). The first one involves cell surface pattern recognition receptors (PRRs) 
to detect pathogen-associated molecular patterns (PAMPs) and initiate PAMP- 
triggered immunity (PTI). The second involves nucleotide-binding leucine-rich 
repeat (NB-LRR) proteins, encoded by resistance (R) genes, which sense pathogen 
effectors and elicit a potent immune response called effector-triggered immunity 
(ETI). ETI is faster, longer, and stronger than PTI and usually leads to a local cell 
death, the hypersensitive response (HR), which stops the spread of the pathogen 
(Jones and Dangl 2006). In some cases, pathogens can evade such recognitions also 
and suppress host immunity with effectors, causing effector-triggered susceptibility 
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(ETS). R proteins recognize some effectors that enable the pathogen to overcome 
PTI, and the effectors are thus termed an avirulence (Avr) protein (Jones and Dangl 
2006).

As per our current understanding, virulence of the virulent pathogenesis is con-
tributed by the production of effector molecules which thereby suppress plant 
defense, and thus the compatible interactions allow the spread of the pathogen in the 
susceptible plant (Jones and Dangl 2006). Herein the pathogen proliferates at a rate 
in which the plant defense could not keep pace with that subsequently leads to the 
development of disease and necrosis. On the other hand, in resistant plants, the spe-
cific resistance is governed by the recognition of the activity of pathogen effector 
molecules (race-specific avirulence determinant) by plant receptor proteins (Keen 
1990; Scofield et al. 1996; Tang et al. 1996; Berger et al. 2007). Hence, these incom-
patible interactions prevent the pathogen from spreading and impart resistance to 
the plant. The disease resistance “R” genes encode the microbe recognizing plant 
receptors. Those pathogens that cannot establish themselves in the host plant are 
called as avirulent strains of plant pathogens, and their early recognition combined 
with fast activation of plant defense mechanisms results in the inducible defense 
system (Jones and Dangl 2006). Moreover, the recognition of the avirulent strain 
determinant activates a hypersensitive response (HR) that is characterized by local-
ized PCD resulting in small necrotic lesions that efficiently restrict the spread of 
biotrophic pathogens (Heath 2000; Narasimhan et  al. 2001). In addition, plant 
defensins (PDF1.1, PDF1.2) mRNAs are expressed in response to gene for gene 
interaction (Narasimhan et al. 2001). As discussed earlier, various signaling mole-
cules like jasmonic acid, salicylic acid, ethylene, and reactive oxygen species (ROS) 
are directly involved in such inducible defense systems (Clarke et al. 2000; Kunkel 
and Brooks 2002; Hossain et al. 2007). The jasmonate/ethylene signaling pathway 
seems to be the most important mechanism in defending against necrotrophic patho-
gens. On the other hand, in order to combat against the biotrophic pathogens, plants 
recruit the salicylic acid-dependent responses (Thomma et al. 2001).

1.3  How Arabidopsis thaliana Recognize and Respond 
to Pathogens?

In nature, plants are exposed to a large number of pathogens, but somehow they are 
susceptible to only a few of them. This may be due to the presence of different 
defense mechanisms exhibited by the plants (Nimchuk et  al. 2003; Jones and 
Takemoto 2004). The disease resistance (R) genes that are involved in pathogen 
recognition show excessive polymorphism. This polymorphism has been speculated 
as a cause for plant resistance. In monoculture, loss of R gene polymorphism results 
in reduced resistance and increased susceptibility (Stahl and Bishop 2000). 
Arabidopsis is prone to infection by pathogens that includes viruses, bacteria, fungi, 
nematodes, and insects. As the mode of response to the pathogen attack is highly 
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conserved in higher plant species, study of Arabidopsis-pathogen interactions have 
greatly helped the scientists to understand the molecular and cellular basis of host-
pathogen interactions, disease resistance, and pathogen virulence (Andargie and Li 
2016).

As stated earlier, R genes are important for parasite recognition and initiation of 
defense mechanism. A total of 150 different R genes have been identified in 
Arabidopsis genome that are located unevenly on chromosomes with 49, 2, 16, 28, 
and 55 R gene loci on chromosome number 1, 2, 3, 4, and 5, respectively 
(Arabidopsis-Genome-Initiative 2000). These R genes encode for proteins that con-
tain nucleotide-binding (NB) domain(s) that binds to ATP or GTP along with a 
carboxy-terminal leucine-rich repeat (LRR) domain (S) that facilitate protein- 
protein interactions and ligand binding. They are further classified as those that 
contain toll interleukin 1 receptor domain (TIR) or coiled-coil (CC) domain at their 
amino terminal. Thus, broadly they can be classified as TIR-NB-LRR and CC-NB- 
LRR. Arabidopsis genome contains 85 TIR-NB-LRR resistance genes at 64 loci 
and 36 CC-NB-LRR resistance genes at 30 loci (Arabidopsis-Genome-Initiative 
2000). Some of these R genes carry additional domains also, like WRKY transcrip-
tion factor domain and protein kinase domain that have also been implicated in plant 
defense.

Studies were carried out to compare the defense mechanisms in plants and ani-
mals. Nitric oxide production seems to be a common response in both plants and 
mammals in conditions of biotic stress. But distinct homologue of nitric oxide syn-
thase gene was not found in Arabidopsis. REL (reticuloendotheliosis) domain tran-
scription factors or similar proteins  that are involved in innate immunity in both 
Drosophila and mammals or their homologs were not detected in Arabidopsis thali-
ana. Moreover, no homologues were detected for genes like classical caspases, 
bcl2/ced9, and baculovirus p35 that are involved in apoptosis regulation in animal 
cells; however, eight homologues of metacaspase family protein and 36 cysteine 
proteases were found in Arabidopsis (Arabidopsis-Genome-Initiative 2000; Uren 
et al. 2000). The production of reactive oxygen intermediates is a primary response 
that is common to both plant and animal during pathogen recognition. This process 
involves transfer of electrons across the plasma membrane in mitochondria to make 
superoxide by a specialized respiratory burst oxidase. In mammals, gp91 is the sub-
unit of NADH oxidase that catalyzes the final step of electron transfer to molecular 
oxygen (O2), resulting in the generation of superoxide ion (O2

−) (Yu et al. 1998). The 
Arabidopsis genome has eight functional homologues of gp91. These homologues 
are called Atrboh genes and have been implicated in plant defense response (Torres 
et al. 2002). In mammals, gp91 activity requires the action of Rac proteins, but no 
Rac or Ras proteins are found in Arabidopsis; however, a large family of rop genes 
that are related to G-proteins are present and may carry the same function. The vari-
ous pathogens of Arabidopsis thaliana, gene associated with natural variation of 
response to those pathogens and their molecular functions, are summarized in 
Table 1.1.
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Table 1.1 Various pathogens of Arabidopsis thaliana along with gene associated with natural 
variation of response to pathogen interactions and their molecular functions (Roux and Bergelson 
2016)

Pathogens of Arabidopsis
Associated gene 
locus Class of the associated gene

Viruses
Turnip crinkle virus (TCV) HRT CC-NBS-LRR protein
Cucumber mosaic virus 
(CMV)

RCY1 CC-NBS-LRR protein

Tobacco ringspot virus 
(TRSV)

TTR1 TIR-NBS-LRR protein

Tobacco etch virus (TEV) RTM1 Jacalin-like lectin protein
RTM2 Small heat shock-like protein
RTM3 MATH domain-containing protein

Plum pox virus (PPV) RTM1 Jacalin-like lectin protein
RTM2 Small heat shock-like protein
RTM3, rwm1/
rpv1

MATH domain-containing protein
Nucleus-encoded chloroplast 
phosphoglycerate kinase

Lettuce mosaic virus (LMV) RTM1 Jacalin-like lectin protein
RTM2 Small heat shock-like protein
RTM3 MATH domain-containing protein

Plantago asiatica mosaic 
virus (PAMV)

JAX1 Jacalin-like lectin protein

Watermelon mosaic virus 
(WMV)

rwm1/rpv1 Nucleus-encoded chloroplast 
phosphoglycerate kinase

Bacteria
Pseudomonas syringae RPM1/RPS3 CC-NBS-LRR protein

RPS2 CC-NBS-LRR protein
RPS5 CC-NBS-LRR protein
RPS4 TIR-NBS-LRR protein
RRS1 TIR-NBS-LRR WRKY protein
ACD6 Ankyrin-repeat transmembrane protein

Xanthomonas campestris RPS4 TIR-NBS-LRR protein
RRS1 TIR-NBS-LRR WRKY protein
RKS1 A typical kinase
AT5G22540 Protein of unknown function

Ralstonia solanacearum RPS4 TIR-NBS-LRR protein
RRS1 TIR-NBS-LRR WRKY protein
ERECTA LRR receptor-like kinase

Fungi
Elicitor from Sclerotinia 
sclerotiorum

RLP30 Receptor-like protein

Botrytis cinerea RLP30 Receptor-like protein
EGM1 Receptor-like kinase
EGM2 Receptor-like kinase
RLM3 TIR-NB protein

(continued)
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1.4  Arabidopsis thaliana: An Important Model Host 
for Studying Plant-Pathogen Interactions

A. thaliana is an important model host for studying plant-pathogen interactions due 
to several reasons as described earlier. Arabidopsis is susceptible to only a limited 
number of pathogens including viruses, bacteria, fungi, nematodes, and insect pests. 
Diseases resulting from these pathogens have been reported in the wild (Holub et al. 
1994, 1995; Tsuji and Somerville 1992) suggesting both the pathogen and the host 
share an ecological niche, and when the appropriate environmental conditions are 
present, disease can occur. Diseases have also been observed in a laboratory setting 
where the host is deliberately exposed to the pathogen. Regardless of the setting, 
nature, or the laboratory, Arabidopsis responds to the pathogen attack in a similar 
fashion as other higher plant species when exposed to viral, prokaryotic, or eukary-
otic pathogens (Andargie and Li 2016). Since the 1990s till today, several plants 
have been recognized as model systems for plant-pathogen interactions such as 
tobacco, tomato, etc., but A. thaliana has been used extensively as a model plant to 
have an overview of the plant-pathogen interactions with a wide variety of patho-
gens. The A. thaliana genetic system is significantly more tractable than those of the 
other plant species, which were hampered by long generation times and large, poly-
ploid, or repetitive genomes. Agriculturally important crucifers such as Brassica 
napus, Brassica rapa (oilseed rape, canola), B. oleracea, Brassica spp., European 
cabbage, cauliflower, Chinese cabbage, and radish (Raphanus spp.) are the closest 
relatives of Arabidopsis, so all the informations available can be useful for studying 
plant-pathogen interactions in these related spp. that are economically important 
crops. But molecular studies can be more complex in these spp. since they are 
mostly polyploids.

Besides, A. thaliana exhibits all of the major kinds of defense responses described 
in other plants. Furthermore, a large number of virulent and avirulent bacterial, 
fungal, and viral pathogens of A. thaliana have been deciphered (Glazebrook et al. 
1997). Mutants defective in almost every aspect of plant growth and development 
have been identified and studied by the various research groups over the world. 
Novel insights into events subsequent to pathogen recognition in A. thaliana have 

Table 1.1 (continued)

Pathogens of Arabidopsis
Associated gene 
locus Class of the associated gene

Fusarium oxysporum RFO1 Wall-associated receptor-like kinase
RFO2 Receptor-like protein
RFO3 Receptor-like kinase

Alternaria brassicicola RLM3 TIR-NB protein
Alternaria brassicae RLM3 TIR-NB protein
Colletotrichum higginsianum RPS4 TIR-NBS-LRR protein

RRS1 TIR-NBS-LRR WRKY protein
Oomycetes
Albugos candida RAC1 TIR-NBS-LRR protein

S. Agrawal



9

been obtained from mutants altered in defense (Buell 1998). Several mutant groups 
in A. thaliana exist today: lesion mimic mutants, phytoalexin mutants, as well as 
enhanced susceptibility and resistance mutants. With the variety of mutants avail-
able, it is possible to determine which defense pathways are activated during patho-
gen attack and what leads to the subsequent resistance or susceptibility. As research 
progresses, the different mutants will be linked to specific genes finally leading to a 
better understanding of the various genes involved in plant response pathways 
(Glazebrook et al. 1997).

1.5  A. thaliana-Pathogen Interactions

Arabidopsis has been reported as a susceptible host to a range of pathogens and 
resistant to other pathogens. The findings related to defense mechanism in 
Arabidopsis have been successfully implemented in many model systems, which 
have been developed to better understand interactions between plants and patho-
gens. The primary response of Arabidopsis includes the perception of pathogens by 
cell surface pattern recognition receptors (PRRs) and is referred to as PAMP- 
triggered immunity (PTI). Activation of FLS2 and EFR triggers MAPK signaling 
pathway that activates defense genes for synthesis of antimicrobial compounds. 
Arabidopsis possess specific intracellular surveillance proteins (R proteins) to mon-
itor the presence of pathogen virulence proteins. This ETI occurs with localized 
programmed cell death to arrest pathogen growth, resulting in cultivar-specific dis-
ease resistance.

1.5.1  Arabidopsis-Virus Interactions

Viral infections and their spread throughout a plant require numerous interactions 
between the host and the virus. Systemic viral infections in plants are complex pro-
cesses that require compatible virus-host interactions in multiple tissues. These 
interactions include viral genome replication in the cytoplasm of the initially 
infected cells, cell-to-cell movement toward neighboring tissues, long-distance 
movement through the vascular tissue, phloem unloading, and cell-to-cell move-
ment in non-inoculated systemic tissues (Carrington et al. 1996). Incompatibilities 
between virus and host factors at any of these stages could therefore lead to restric-
tions and delay establishment of a systemic infection. The utility of Arabidopsis as 
a model system has not gone unnoticed, and several viruses previously found to be 
pathogenic on crucifers have also been found to infect Arabidopsis. This model 
organism has proven to be useful to understand the relationship between the host 
plant and the virus replication and movement processes (Kunkel 1996; Yoshii et al. 
1998). Susceptible interactions between plants and viruses can result in a variety of 
visible symptoms ranging from mild stunting to overall necrosis.

Although plant viruses are among the least genetically complex pathogens, they 
use a variety of strategies to suppress or bypass host defense and infect susceptible 
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hosts. In plants, these strategies may be an enhancement of infection by manipulat-
ing host resources, such as the formation of replication complexes (Hills et  al. 
1987), enlargement of the plasmodesmata size-exclusion limit (Wolf et al. 1989; 
Waigmann et al. 1994), evolution of viral suppressors of RNA silencing to counter-
act antiviral silencing (Burgyan and Havelda 2011), interference with plant cell 
cycle regulation (Lai et al. 2009), and using host components for its own replication. 
In turn, plants have evolved intricate mechanisms to fight viral infection, such as 
pathways mediated by gene silencing, hormone-mediated signaling pathways, and 
regulation of metabolism (Gao et al. 2016).

A number of viruses such as turnip crinkle virus, cucumber mosaic virus, tobacco 
ringspot virus, tobacco etch virus, plum pox virus, lettuce mosaic virus, plantago 
asiatica mosaic virus, and watermelon mosaic virus are reported to infect A. thali-
ana. In Arabidopsis-turnip crinkle virus pathosystems, turnip crinkle virus (TCV) 
is the smallest and simplest plant RNA virus belonging to Tombusviridae family 
Carmoviruses. It infects many Arabidopsis ecotypes (Dempsey et al. 1993). The 
ecotype Dijon (Di-O) of A. thaliana has been reported to be resistant to TCV-M 
infection. This resistance is not expressed at the cellular level but rather at the level 
of whole plant. In Arabidopsis, resistance to most viral pathogens does not involve 
an HR (Ishikawa et al. 1991; Leisner et al. 1993; Lee et al. 1994; Callaway et al. 
1996). However, inoculation of turnip crinkle virus (TCV) on plants from the resis-
tant ecotype Dijon (Di-0 or Di-17) shows both an HR and the induction of PR gene 
expression (Simon et  al. 1992; Dempsey et  al. 1993, 1997; Uknes et  al. 1993). 
Furthermore, it was found that the HR and resistance are dependent on SA but inde-
pendent of NPR1, ethylene, and JA-mediated defense signaling (Kachroo et  al. 
2000). Genetic analyses revealed that HR development is conferred by a single 
dominant gene termed HRT (for HR to TCV) (Dempsey et al. 1997). HRT gene has 
been reported to trigger defense gene expression and SA accumulation (Cooley 
et  al. 2000; Ren et  al. 2000; Jeong et  al. 2008). Thus, HRT also appears to be 
required for resistance to TCV infection along with a second locus, named RRT 
(which regulates resistance to TCV). In contrast, TCV-susceptible ecotypes, includ-
ing Columbia (Col-0), fail to mount an HR, exhibit delayed and weak PR gene 
expression, and develop systemic disease symptoms (Li and Simon 1990; Dempsey 
et al. 1993). TCV infection triggers the production of ROS as well as alteration of 
cellular redox in Arabidopsis (Pu et al. 2016).

1.5.2  Arabidopsis-Bacterium Interactions

Perhaps, bacterial pathogens are the more facile pathogens to work with in a labora-
tory setting as bacteria have several advantages over the other classes of pathogens 
for pathological studies. They can be cultured in  vitro and have relatively rapid 
generation times (only minutes not even days). In addition, most bacterial plant 
pathogens elicit rapid host responses (hours to days) and have pathogenicity and 
avirulence factors that have been documented in other plant species. Thus, they 
provide a foundation to begin work in Arabidopsis. Only a small number of 

S. Agrawal



11

bacterial species are pathogenic on Arabidopsis. The predominant bacterial patho-
gen utilized in Arabidopsis studies is Pseudomonas syringae on which many scien-
tists have reported various important findings. Additional bacterial pathogens 
utilized in Arabidopsis research include Erwinia species (causal agents of soft rots), 
Ralstonia species (causal agents of vascular wilts), and Xanthomonas campestris 
pathovars (causal agents of blights and rots). A brief review of Arabidopsis-
Pseudomonas pathosystems is presented in this chapter.

The interaction between A. thaliana and various phytopathogenic Pseudomonas 
pathovars presents an outstanding model to genetically define plant and bacterial 
loci necessary for generation of a hypersensitive response (HR) (Dangl et al. 1991). 
Certain isolates of Pseudomonas syringae pv. maculicola are virulent on Arabidopsis, 
while others are not. Pseudomonas syringae is a Gram-negative, rod-shaped bacte-
rium with polar flagella (Agrios 1997). Different strains of P. syringae, however, are 
known for their diverse and host-specific interactions with plants (Hirano and Upper 
2000). Understanding the molecular basis of this high level of host specificity has 
been a driving force in using P. syringae as a model for the study of host-pathogen 
interactions. In crop fields, infected seeds are often an important source of primary 
inoculum in P. syringae diseases, and epiphytic bacterial growth on leaf surfaces 
often precedes disease development (Hirano and Upper 2000). P. syringae enters 
the host tissues (usually leaves) through wounds or natural openings such as sto-
mata, and in a susceptible plant, it multiplies to high population levels in intercel-
lular spaces. Infected leaves show water-soaked patches, which eventually become 
necrotic. Depending on P. syringae strains, necrotic lesions may be surrounded by 
diffuse chlorosis. Some strains of P. syringae also cause cankers and galls (Agrios 
1997). In resistant plants, on the other hand, P. syringae triggers the hypersensitive 
response (HR), a rapid, defense-associated death of plant cells in contact with the 
pathogen (Klement et al. 1964). In this situation, P. syringae fails to multiply to high 
population levels and causes no disease symptoms. Several strains belonging to 
pathovars tomato, maculicola, pisi, and atropurpurea of Pseudomonas syringae 
may infect the model plant A. thaliana (Crute et al. 1994). The establishment of the 
Arabidopsis-P. syringae pathosystem triggered a period of highly productive 
research that has contributed to the elucidation of the fascinating mechanisms 
underlying plant recognition of pathogens, signal transduction pathways controlling 
plant defense responses, host susceptibility, and pathogen virulence and avirulence 
determinants.

Upon infection with P. syringae, PTI and the subsequent SA-dependent and 
independent defenses are activated in Arabidopsis (Tsuda et al. 2008). About 36 
protein effectors (Cunnac et al. 2009; Lindeberg et al. 2009) are secreted into the 
host cell by a remarkable system conserved in Gram-negative bacteria called the 
type III secretion system (TTSS). These effectors suppress both SA-independent 
and SA-mediated basal defenses (Nomura et al. 2005; Kim et al. 2008). Furthermore, 
P. syringae pathovars secrete the phytotoxin coronatine (COR) involved in bacterial 
virulence (Kloek et al. 2001). COR has been reported to target JA, ET, AUX, and 
ABA pathways, which play important roles to antagonize the SA-mediated defenses 
(Thilmony et  al. 2006). COR also suppresses PTI and induces the reopening of 
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stomata that have been closed upon recognition of the bacterial flagellin and lipo-
polysaccharides by Arabidopsis (Melotto et al. 2006). Both COR and TTSS effec-
tors display common and distinct virulence effects in Arabidopsis such as targeting 
the JA pathway, thereby repressing the SA-inducible defenses (Zhao et al. 2003; He 
et al. 2004; Uppalapati et al. 2007). Thus, during P. syringae infections, TTSS effec-
tors and COR plays important role in suppression of SA-inducible responses and 
promote full susceptibility (Laurie-Berry et al. 2006). Some TTSS effectors of P. 
syringae also interfere with the AUX (Navarro et al. 2006; Chen et al. 2007; Zhang 
et al. 2007) and the ABA pathways (de Torres-Zabala et al. 2007), both promoting 
the repression of SA-inducible defenses. These effectors interfere with the hor-
monal network of plant defenses, thereby leading to successful infection through 
the suppression of basal defenses including the SA pathway (Fig. 1.2).

Importantly, and in contrast to most fungal pathogens, Pseudomonas syringae is 
amenable to molecular genetic manipulations such as gene introduction, transposon 

Fig. 1.2 Networking between the principal plant defense hormones during Arabidopsis- 
Pseudomonas interaction. The signaling cascades of the major plant defense pathways (salicylic 
acid (SA), jasmonic acid (JA), ethylene (ET), which are the backbone of defense signaling net-
work) along with other hormonal signaling pathways feeding into it are shown here. The cross- 
communications between these signaling pathways that lead to protection against different 
pathogens may have synergistic (shown in blue color) as well as antagonistic (shown in red color) 
effects. In addition, the hemibiotrophic bacteria Pseudomonas syringae can suppress host defenses 
by manipulating plant hormone pathways through secretion of the phytotoxin coronatine and 
effectors delivered by the type III secretion system (TTSS) (Adapted from Pieterse et al. 2009)
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mutagenesis, and targeted gene replacement. Some P. syringae pv. tomato and pv. 
maculicola strains are virulent on some Arabidopsis ecotypes (Quirino and Bent 
2003). Among its various strains, pathovar tomato strain DC3000 (PstDC3000) can 
usually infect the plant host A. thaliana. This A. thaliana-Pseudomonas syringae 
pv. tomato DC3000 (DC3000) pathosystem has been reported to be an ideal system 
to understand both microbial-associated molecular pattern (MAMP)-triggered 
immunity (MTI) and effector-triggered susceptibility (ETS) processes at the tran-
scriptional level (Xin and He 2013). DC3000 is highly virulent on Arabidopsis as it 
directly delivers 28 effector proteins (Cunnac et al. 2009) into the host cell through 
type III secretion system (TTSS) as well as small molecules such as coronatine 
(COR). These virulence factors collectively suppress MAMP-triggered immunity 
(MTI) and enhance nutrient availability, therefore allowing bacterial multiplication. 
A key structural component of the TTSS pilus is the HrpA protein. DC3000hrpA- 
mutants activate MTI but cannot form a TTSS to deliver the suite of effectors that 
can suppress MTI.  They also produce minimal amounts of coronatine. Thus, 
DC3000hrpA-infection triggers MTI in the host (Lewis et al. 2015).

1.5.3  Arabidopsis-Fungus Interactions

A large number of fungal and oomycete pathogens have been reported to infect A. 
thaliana, either naturally or in the laboratory. These include Ustilaginoidea, Botrytis, 
Fusarium, Colletotrichum, obligate biotrophs (e.g., Peronospora, Albugo, and 
Erysiphe), hemibiotrophs (i.e., facultative biotrophs; e.g., Phytophthora), and 
necrotrophs (e.g., Alternaria, Botrytis, and Rhizoctonia). On infection, Arabidopsis 
respond to each pathogen in a specific manner. A brief review of Arabidopsis- 
Ustilaginoidea pathosystems is described here.

The biotrophic ascomycete fungus, Ustilaginoidea virens (Cooke) Tak (teleo-
morph: Villosiclava virens), causes one of the most severe false smut diseases in rice 
(Oryza sativa) (Ford et al. 1994; Talbot and Foster 2001). This pathogenic fungus 
has been reported to interact compatibly with the model plant A. thaliana also 
(Andargie and Li 2016). In rice, U. virens infection converts infected rice grains into 
smut balls, which results in sterility of the florets, whereas in Arabidopsis sterility 
of the flowers is evident without smut ball formation. A 39.4 Mb draft of U. virens 
genome that encodes 8426 predicted genes have been sequenced (Zhang et  al. 
2014). In addition to this, the pathogen has showed a decreased gene inventories for 
different metabolisms including nutrient uptake and polysaccharide degradation. 
This could arise possibly due to the adaptation of the pathogen to the specific floret 
infection and biotrophic lifestyles. Once U. virens colonize and attack the leaves, 
flowers, pods, and roots of a dicotyledonous plant, A. thaliana, different defense 
response proteins become induced in the infected plants as witnessed through gene 
expression analysis. A. thaliana has been reported to activate a hypersensitive 
response (HR) mechanism which precedes a slower systemic response that ulti-
mately leads to systemic defense response. This mechanism reduces the damage 
and destruction caused by this biotrophic fungus. The progression of the fungal 
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hyphae on the surface of the leaves is through the attachment to the trichomes. 
Leaves, along with retention of fungal spores, also determine the survival, attach-
ment, and penetration of the hyphae. The trichomes present on the leaf surface pro-
vide physical adhesion point for the hyphae in addition to retaining water on the 
plant surface and provide nutrients and protected environment for microbial growth 
(Lindow and Brandl 2003; Monier and Lindow 2003; Calo et al. 2006).

Basically both Arabidopsis and rice share similar defense response mechanisms. 
Chao et al. (2014) reported that during the first stage of U. virens infection in the 
infected rice spikelet, proteins that are involved in protein modification, protein 
degradation, and receptor phosphorylation become activated to a great extent. 
During this time, some receptor protein kinases can activate corresponding sub-
strates to facilitate downstream signal transduction, and this is shown by MPK3 and 
MPK6, which phosphorylate WRKY33 to initiate phytoalexin biosynthesis in 
Arabidopsis. In addition, a protein kinase APK1B which is involved in stamen 
development and its repression can prevent pollen tube germination causing self- 
incompatibility in Arabidopsis, is also involved in defense against U. virens causing 
rice spikelet infection. The presence of protein kinase APK1B indicates that the 
pathogen manipulates host development signaling by prohibiting protein phosphor-
ylation, hence allowing further infection of the plant with U. virens to occur.

Andargie and Li (2016) performed semiquantitative RT-PCR analysis with the 
RNA isolated from leaves, roots, flowers, and siliques of Arabidopsis plants follow-
ing infection with the U. virens spores in order to test whether the pathogenesis- 
related genes or plant defensin genes were inducible by pathogen infection. Their 
findings indicate that U. virens isolates infect Arabidopsis, and the plant subse-
quently activates different defense response mechanisms, witnessed by the expres-
sion of pathogenesis-related genes, PR-1, PR-2, PR-5, PDF1.1, and PDF1.2. Thus 
Arabidopsis plants activate different defense strategies in order to limit the damage 
and destruction which are caused by this biotrophic fungus U. virens and may serve 
as a good model host species to study the interaction between infected plants and 
the rice false smut fungus U. virens.

Thus it is a novel pathosystem based on U. virens and Arabidopsis as rice patho-
genic U. virens transformed colonies may infect and colonize endophytically on the 
different parts of the Arabidopsis plant. Since the processes that determine the out-
come of an interaction between a microbial pathogen and a host plant are complex, 
understanding the molecular details of these interactions, like the pathogen genes 
required for infection, effective host defense responses, as well as mechanisms by 
which host and pathogen signaling networks are regulated, might be utilized to 
design new plant protection strategies. Generally, the established A. thaliana-U. 
virens pathosystem could be able to expand the model systems investigating fungi- 
plant interactions and will facilitate a full understanding of U. virens biology and 
pathology. It can advance our knowledge in order to describe the plant immune 
system. This pathosystem will now permit various follow-up molecular genetics 
and gene expression experiments to be performed to identify the defense signals and 
responses that restrict fungal hyphae colonization in plants and also provide initial 
evidence for tissue-adapted fungal infection strategies.
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1.6  Conclusion

This chapter has focused on the well-suited model interactions of A. thaliana with 
various plant pathogens (fungi, bacteria, and virus). Till now, various studies have 
been done pertaining to the interaction of A. thaliana with a large number of viru-
lent and avirulent bacterial, fungal, and viral pathogens. This model species exhibits 
all of the major kinds of defense responses described in other plants. Regardless of 
the setting, nature, or the laboratory, Arabidopsis responds to the pathogen attack in 
a similar fashion as other higher plant species when exposed to pathogens. A. thali-
ana has been used extensively as a model plant not for any particular pathogen but 
to understand diverse range of plant-pathogen interactions with a wide variety of 
pathogens. The exhaustive analysis of Arabidopsis genes, whose expression is mod-
ulated during disease development, paves the way for dissecting plant networks 
activated by recognition of pathogen effectors in susceptible plants.

The lessons learned and information gathered from the model plant, Arabidopsis, 
can be applied to agronomically important crops. The study of this model plant 
interaction with various pathogens will contribute to our appreciation of how plants 
and pathogens have evolved to survive each other’s attacks and counterattacks, 
which will in turn help us to develop sustained control measures by guided intercep-
tion of pathogen virulence and/or by selective activation of plant defense. Thus it 
may address the key challenges of understanding how both plant defense and patho-
gen attacks are integrated and translating knowledge from Arabidopsis to crop 
plants. It would enable researchers to limit disease spread due to a better knowledge 
of the pathogen as well as provide them with a better understanding of the mecha-
nisms involved in plant defense. Interfamily transfer of R genes from Arabidopsis 
can develop pathogen-resistant crops. It has been reported when RRS1/RPS4 pair of 
R genes from Arabidopsis thaliana was transferred to tomato, it caused resistance 
against Ralstonia solanacearum.

Glossary

Avirulence (Avr) protein Small proteins produced by pathogens and recognized 
by the host cell resistance proteins. These proteins trigger defense responses 
in plants. Avr proteins are often type III secretion system effectors, involved in 
pathogenicity.

Basal defense Plant defense that occurs early in the host-pathogen interaction in 
response to the perception by plant pattern recognition receptors of microbial-
associated molecular patterns (MAMPs). Basal defense is MAMP-triggered 
immunity (MTI) plus weak effector-triggered immunity (ETI), minus effector-
triggered susceptibility (ETS).

Biotroph A pathogen that colonizes living tissues for its growth and reproduction.
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Effector molecules Pathogen-produced molecules that interfere with and suppress 
plant defense mechanisms, e.g., bacterial proteins, delivered by the bacterial type 
III secretion system (TTSS) to the plant cell interior.

Effector-triggered immunity (ETI) Immune responses triggered by recognition 
of specific pathogen effectors. The ETI response relies on R genes. Plant ETI 
often causes an apoptotic hypersensitive response.

Effector-triggered susceptibility (ETS) The state of a plant in which the plant’s 
defense mechanism become suppressed by pathogen effector molecules.

Elicitor Any metabolite isolated from pathogens that at a very low concentration 
induces a hypersensitive response in host plants.

Hypersensitive response (HR) A complex defense response that is often asso-
ciated with resistance (R) protein-mediated immunity. HR culminates in pro-
grammed cell death in cells in the vicinity of the pathogen, which may inhibit 
pathogen spreading.

MAMP-triggered immunity (MTI) Immunity raised after recognition of MAMPs 
by pattern recognition receptors (PRRs) localized on the surface of plant cells.

Microbial-associated molecular patterns (MAMPs) More recent term used for 
PAMPs. A series of essential and conserved molecular motifs of both patho-
genic and nonpathogenic microbes that can be recognized by pattern recognition 
receptors in plants.

Necrotroph A pathogen that rapidly kills the host tissue and feeds on the dead 
tissue.

PAMP-triggered immunity (PTI) Immunity raised from the interaction of pattern 
recognition receptors (PRRs) in plant cells with elicitor molecules. It is a part of 
the first line of defense and results in a basal level of resistance.

Pathogen-associated molecular patterns (PAMPs) A set of molecular structures 
(epitopes) not shared with the host but shared by related pathogens, relatively 
invariant.

Pathogenesis-related (PR) genes Plant genes that activates after infection by 
pathogens.

Pathogenesis-related (PR) proteins Plant proteins that are synthesized in response 
to microbial attack and that serve to limit the growth pathogens. They are induced 
as a part of systemic acquired resistance.

Pattern recognition receptors (PRRs) Germ line-encoded proteins that can rec-
ognize microbe-associated molecular patterns and induce signaling cascade in 
innate immunity responses.

Plant defensin (PDF) Small, highly stable, cysteine-rich peptides that constitute 
a part of the innate immune system, mostly involved in defense against a broad 
range of fungal pathogens.

R genes and R proteins Plants have R genes (resistance genes) whose products 
mediate resistance to specific microbes, e.g., virus, bacteria, fungus, oomycete, 
nematode, etc. The product of R gene is R protein that allows recognition of 
specific pathogen effectors, either through direct binding or by recognition of the 
effector’s alteration of a host protein.

S. Agrawal



17

Systemic acquired resistance (SAR) Inducible whole-body resistance. The devel-
opment of a general immune capacity throughout the entire plant following an 
initial invasion by a pathogen.
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and Necrotrophy
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Abstract
Plant pathogens have been divided into two classes, namely, biotrophs and necro-
trophs. These pathogens lead to significant economic losses by infecting various 
crops. Biotrophs complete their life cycle by using the living host cell machinery, 
while necrotrophs feed on the host cell after killing them. Hemibiotrophs, a third 
group, show both the forms for obtaining nutrition i.e., early biotrophic stage to 
later necrotrophic phase. After infecting the plants, both the groups of plant 
pathogens can trigger and suppress plant immune responses by synthesizing and 
secreting effector proteins. In case of biotrophic pathogens, effector proteins 
were found to be Avr proteins (identified by resistance proteins), hrp genes, and 
cell wall-degrading enzymes, while necrotrophic pathogen has additional effec-
tors called as host-selective toxins. Significant differences have been observed 
between these two groups in the disease symptoms they cause, their host range, 
morphogenesis of the infection, production of secondary metabolites and hor-
mones, and nature of plant resistance. Biotrophs possess a sophisticated way of 
infection, i.e., it enters the host cell using the haustoria, colonizes the intercellu-
lar space, and overpowers the host defenses. Necrotrophs have been further 
grouped into host-specific and broad host range necrotrophs depending on the 
toxins they secrete. In case of necrotrophic infections, host cell death has been 
shown to trigger production of hormones like ethylene, abscisic acid, salicylic 
acid, and jasmonic acid. Both bacterial and fungal plant pathogens belonging to 
the above mentioned category have been identified. In this chapter we are going 
to discuss the current state of knowledge about bacterial and fungal biotrophs 
and necrotrophs.
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2.1  Introduction

During the course of evolution, there has been an arms race between plant patho-
gens and their hosts or virulence and resistance. To date, many phytopathogens 
having varied infection strategies have been identified. These phytopathogens are 
broadly divided into two major categories on their modes of nutrition, namely, 
necrotrophs and biotrophs. These pathogens can be bacterial and fungal and cause 
various diseases in plants. Necrotrophic pathogens kill the host tissue rapidly and 
survive on the contents (Stone 2001), while biotrophic pathogens thrive on the 
nutrients of the living host. Biotrophs have a sophisticated or stealthy mechanism of 
invasion, and they develop specialized structures such as haustoria, appressoria, and 
hyphae for gaining entry into the host plant for absorbing nutrients and for blocking 
the immune responses of plants (Schulze-Lefert and Panstruga 2003; Mendgen and 
Hahn 2004). Biotroph sustains the host viability, causes comparatively little injury 
to the host, and suppresses hypersensitive response (HR; localized programmed cell 
death of host plant) as it restricts the nutrient supply. Necrotrophs are less sophisti-
cated, rather are notorious and have various virulence strategies for killing and 
absorbing the nutrient from the host plant cells for their growth and reproduction. 
They macerate the tissues or can cause soft rots and stimulate HR-like host cell 
death. Based on the secretion of toxins, necrotrophs have been further divided into 
two subcategories, namely, host-specific necrotrophs (HSNs) and broad host range 
necrotrophs (BHNs) (Wolpert et  al. 2002). As the name suggests, HSNs secrete 
host-specific toxins for the development of virulence. The fungal necrotrophs 
Cochliobolus carbonum and Alternaria spp. have been shown to secrete host- 
specific toxins for the pathogenicity (Walton 1996). The examples of necrotrophs 
belonging to BHN category include the bacterial pathogen Erwinia carotovora and 
fungal pathogens Plectosphaerella cucumerina, Botrytis cinerea, Alternaria bras-
sicicola, and Sclerotinia sclerotiorum (Mengiste 2012). All these reports suggest the 
fact that there are significant differences between the two major classes of patho-
gens in terms of infection symptoms, host range, and effector proteins they secrete 
(Laluk and Mengiste 2010).

Another category of phytopathogens has been named as hemibiotrophs, which 
exhibit two phases of nutrient acquisition: an early biotrophic phase and later mani-
fests necrotrophic phase. Hemibiotrophic plant pathogens include bacterium 
Pseudomonas syringae, fungi Colletotrichum graminicola and Magnaporthe ory-
zae, and oomycete Phytophthora infestans (Lee and Rose 2010). Irrespective of the 
category of pathogens, the basic events after the invasion include production of 
effector proteins by the pathogen for their colonization, while, in case of host plant, 
the defense mechanism is activated for limiting the spread of pathogen. In case of 
necrotrophic invasion, host cell death, and secretion of various secondary 
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metabolites and hormones named such as jasmonic acid, salicylic acid, abscisic 
acid, and ethylene, accumulation of reactive oxygen species and callose takes place 
(Mengiste 2012).

Plant fungal pathogens cause various diseases on economically important crops. 
They exhibit different infection strategies and develop specialized infection struc-
tures for deriving the nutrition. All the three modes of pathogenesis (necrotrophy, 
biotrophy, and hemibiotrophy) have been identified in fungi. Different fungi secrete 
different pathogen effector molecules during the infection process for their invasion 
and colonization. Pathogen effectors have been shown to be involved in pathogenic-
ity, as silencing or disrupting pathogen effector coding genes showed reduced viru-
lence (Stergiopoulos et al. 2013). Fungi also secrete certain toxins, cell wall-degrading 
enzymes, and toxic secondary metabolites to aid the infection process (Horbach 
et al. 2011). It is believed that infection strategies of biotrophic fungi are more com-
plex when compared to necrotrophic ones.

Bacterial pathogens belonging to both the categories secrete virulence proteins, 
cell wall-degrading enzymes, toxins, and extracellular polysaccharides during the 
infection for their colonization, growth, and replication (Alfano and Collmer 1996). 
Bacteria possess a multi-protein secretory system for translocating the virulence fac-
tors to the host plant cell (Alfano and Collmer 2004) and also employ the quorum 
sensing to suppress the host immune system. The most well-characterized bacterial 
pathogens include Pseudomonas, Erwinia, Xanthomonas, and Ralstonia. All the gen-
era have three common features, i.e., they kill the cells, inhabit the intercellular spaces, 
and have hrp genes (hypersensitive response and pathogenicity; Alfano and Collmer 
1997). The Hrp protein secretion system is very important for pathogenesis.

These pathogens cause various pre- and post-harvest diseases in economically 
important plants incurring significant economic losses. The plant responds to these 
pathogens by activating the immune system called as pathogen-associated molecu-
lar pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI), 
and phytohormone signaling (Bent and Mackey 2007; Willment and Brown 2007).

Whole genome sequencing and comparative genomics studies have helped in 
better understanding of the various effector proteins, strategies of pathogenesis, and 
resistance mechanism in plants. Different effector proteins have also been used as 
an imperative tool in disease resistance breeding (Vleeshouwers and Oliver 2014). 
This chapter provides an overview on the different lifestyles and infection strategies 
of fungal and bacterial phytopathogens characterized.

2.2  Fungal Biotrophy and Necrotrophy

Of the 1.5 million species of fungi projected to exist (Hawksworth 1991), very few 
of them have been functionally characterized. The lifestyle of pathogenic fungi can 
be saprophytic, biotrophic, or necrotrophic (Kahmann and Basse 2001; Mendgen 
and Hahn 2002; Glazebrook 2005; Howlett 2006; Ferreira et al. 2007). It has been 
suggested that most of the fungi are saprotrophic in nature, i.e., they derive their 
nutrition from decaying organic matter (Kahmann and Basse 2001; Ahmad et al. 
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2006). Fungal necrotrophs first infect the host cells, and this requires various stages 
of conidial attachment followed by germination, formation of lesion, and finally the 
softening of tissue and sporulation (Prins et  al. 2000). After the initial phase of 
infection, the penetration is facilitated by production of toxins, appressoria, hausto-
ria, hyphae formation, and secretion of cell wall-degrading enzymes (CWDEs) 
(Prell and Day 2001; Idnurm and Howlett 2001; Mendgen and Hahn 2002; Oliver 
and Ipcho 2004). All through the infection process, fungi also dynamically suppress 
the host cell defense by manipulating various processes, thereby aiding their own 
proliferation (Prins et al. 2000). Biotrophic pathogens obtain the nutrients from liv-
ing cells by forming complex infection structures like hyphae or haustoria for 
exchanging nutrients from the host plant cell (Heath 1997, 2002; Schulze-Lefert 
2004). The secretory activity of CWDEs is limited in case of fungal biotrophs 
(Idnurm and Howlett 2001; Tudzynski and Sharon 2003; Oliver and Ipcho 2004; 
Schulze-Lefert 2004). The definitions are categorical, but the relationship between 
necrotrophs and biotrophs is probably best represented as continuum with interme-
diates, i.e., hemibiotrophs, pathogens that initiate infection as biotrophs but later 
switch to necrotrophs (Glazebrook 2005). The economically important biotrophic, 
hemibiotrophic, and necrotrophic plant fungal pathogens have been recorded in 
Tables 2.1 and 2.2.

2.2.1  Effector Proteins Secreted by Fungal Plant Pathogens

Plants recognize fungal pathogens on the basis of pathogen-associated molecular 
patterns (PAMPs). PAMPs are conserved molecules important for pathogen and 
characterize a class of microbes (Bent and Mackey 2007; Willment and Brown 
2007). Examples of PAMPs include fungal xylanase (Ron and Avni 2004) and chitin 
(Kaku et al. 2006; Miya et al. 2007). Detection of these PAMPs by pattern recogni-
tion receptors (PRRs) leads to a PAMP-triggered immune response (Bent and 
Mackey 2007; Hückelhoven 2007; Zipfel 2008, 2009). To counter the PTI, fungal 
pathogens secrete effector molecules that can directly suppress the host defense 
response and also alter the host cell physiology for their proliferation (Boller and He 
2009; Göhre and Robatzek 2009; Stergiopoulos and de Wit 2009; Stergiopoulos 
et al. 2010; Koeck et al. 2011).

Chitin (the major structural component of filamentous fungus cell wall) is 
released by the action of plant chitinases and triggers the immune response of plants 
(Kaku et al. 2006; Miya et al. 2007). The secreted effector Ecp6 from Cladosporium 
fulvum competes with the plant receptors CEBiP, by sequestering chitin oligosac-
charides, and suppresses chitin-triggered immunity (de Jonge et al. 2010).

As discussed earlier Avr genes are another category of pathogen effectors that are 
specifically recognized by plant resistance (R). R genes consist of leucine-rich 
repeat (LRR) domains and nucleotide-binding sites (NBS) (Jones and Dangl 2006). 
It is not clear how fungal pathogens translocate the effector proteins into the host 
cell and whether they have type III secretion system or not as it is present in bacte-
rial pathogens (Jin et al. 2003; Büttner and Bonas 2006). Most of the fungal Avr 
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Table 2.1 List of important biotrophic, hemibiotrophic, and necrotrophic fungal plant 
pathogens

Name of the pathogen Host plant of the pathogen Name of the disease
Biotrophic pathogens
Cladosporium fulvum Tomato Tomato leaf mold
Ustilago maydis Maize Maize smut
Blumeria graminis Barley; wheat Powdery mildew
Plasmopara halstedii Sunflower Downy mildew
Synchytrium endobioticum Potato Potato wart
Plasmopara viticola Grapevine Downy mildew
Hemibiotrophic pathogens
Magnaporthe oryzae Rice Rice blast
Mycosphaerella graminicola Wheat Septoria tritici leaf 

blotch
Bipolaris sorokiniana Barley; wheat Spot blotch disease
Colletotrichum graminicola Maize Anthracnose stalk rot 

disease
Moniliophthora perniciosa Theobroma cacao Witches’ broom 

disease
Necrotrophic pathogens
Cochliobolus heterostrophus Maize Southern leaf blight
Ascochyta rabiei Chickpea Blight disease
Cochliobolus carbonum Maize Northern leaf spot 

and ear rot
Cochliobolus victoriae Oat Victoria blight
Alternaria alternata Pear; strawberry; tangerine; apple; 

tomato; tobacco; citrus
Black/dark leaf spot

Alternaria solani Tomato and potato Tomato early blight; 
collar and fruit rot

Alternaria brassicicola Brassica species (broccoli, cabbage, 
canola, mustard; cauliflower; turnip)

Black spot (leaf, 
stem, or pod spots)

Periconia circinata Sorghum Milo
Pyrenophora tritici-repentis 
(Drechslera tritici-repentis)

Wheat Tan spot

Bipolaris sacchari Sugarcane Eyespot
Phyllosticta maydis 
(Mycosphaerella 
zeae-maydis)

Maize Yellow corn leaf 
blight

Stagonospora nodorum 
(Phaeosphaeria nodorum)

Wheat Stagonospora 
nodorum blotch

Stemphylium vesicarium European pear Brown spot
Botrytis fabae Bell bean (Vicia faba) Chocolate spot
Name of the pathogen Host plant of the pathogen Name of the disease
Botrytis elliptica Lilly Gray mold
Botrytis cinerea Dicots; some monocots Gray mold “Botrytis 

blight”

(continued)
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genes identified have been shown to contain two important motifs, namely, dEER 
(aspartate, glutamate, glutamate, arginine) and RxLR (arginine, any amino acid, 
leucine, arginine) (Dodds et  al. 2009; Tyler 2009). It is believed that these two 
motifs are essential for the entry into host cell. Mutation in these two motifs pre-
vented the delivery of Avr1b from Phytophthora sojae and Avr3a from P. infestans 
into the host cell (Whisson et al. 2007; Dou et al. 2008). N-terminal “RxLR-like” 
motifs have been identified in the Avr genes of Fusarium oxysporum f. sp. lycoper-
sici, Melampsora lini, and Leptosphaeria maculans (Kale et al. 2010). Based on the 
observation that oomycete and fungal RxLR-like motifs interact with the 
phosphatidylinositol- 3-phosphate (an abundant phospholipid present in the outer 
surface of plasma membrane of plants), Kale et al. (2010) proposed that lipid raft- 
mediated endocytosis allows the pathogen effectors to enter the plant cell. 
Approximately 1500 effectors with RxLR and dEER motifs have been identified in 

Table 2.1 (continued)

Name of the pathogen Host plant of the pathogen Name of the disease
Sclerotinia sclerotiorum Cabbage; bean; citrus; celery; 

coriander; melon; squash; soybean; 
tomato; lettuce; cucumber

White mold

Monilinia fructicola Prunus species (apples; pears; and 
other pome fruits in Rosaceae)

Brown fruit rots

Fusarium graminearum/
Gibberella zeae

Cereals Fusarium head blight

Cercospora zeae-maydis Maize Gray leaf spot
Exserohilum turcicum Maize Northern leaf blight
Leptosphaeria maculans Oilseed rape (or canola) (Brassica 

napus)
Blackleg or stem 
canker disease

Diaporthe toxica Lupin Phomopsis stem 
blight

Phoma medicaginis Pea Leaf spot and spring 
black stem

Colletotrichum 
gloeosporioides

Lupin and mango Anthracnose

Fusarium oxysporum Tomato, banana, cotton, and many 
others

Fusarium wilt

Rhizoctonia solani Lucerne, clovers, pasture grasses, 
grain legumes, cereals, and oilseed 
crops

Rhizoctonia canker/
root rot

Pythium spp. Very broad Seedling damping off
Leptosphaerulina trifolii Medicago spp. Lepto leaf spot
Pleiochaeta setosa Lupin Brown leaf spot
Stagonospora meliloti Lucerne and medics Stagonospora crown 

rot
Stemphylium botryosum Tomato; alfalfa; lettuce Leaf spot and foliage 

blight
Pseudopeziza medicaginis Lucerne Common leaf spot

Adapted from Laluk and Mengiste (2010) and Wang et al. (2014)
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Phytophthora species (Jiang et al. 2008; Tyler 2009). After entering the host cell, 
these effector molecules suppress the host defense and elicit cell death (Bos et al. 
2006; Dou et al. 2008).

Another category of fungal effectors identified to suppress plant basal resistance 
and cause plant cell death is crinkler and necrosis (CRN) effectors (Torto et  al. 
2003; Win et al. 2007; Haas et al. 2009). The CRN effectors also contain a con-
served FLAK (phenylalanine, leucine, alanine, lysine) domain followed by a signal 
peptide (Win et al. 2007; Haas et al. 2009). Phytophthora genome has been shown 
to contain 61–451 CRN genes (Haas et al. 2009: Liu et al. 2011). Transient expres-
sion of CRN C- terminal domain has been shown to elicit host cell death (Liu et al. 
2011). CRN8 of Phytophthora infestans has also been shown to regulate host sig-
naling during infection by kinase activity (van Damme et  al. 2012). Stam et  al. 
(2013) identified 84 CRN proteins in P. capsici.

In fairly recent reports, small RNAs (sRNA) produced by the fungal pathogens 
have been shown to suppress the host immunity and are termed as non- proteinaceous 
sRNA effectors (Weiberg et al. 2013, 2014; Wang et al. 2015). Fungal phytopatho-
gens also produce various small secretory proteins (SSPs) important for virulence. 
A family of such SSPs implicated as effector proteins required for pathogen host 
association has been identified in different fungal species, and it is believed that 
biotrophs are likely to secrete more SSPs as compared to necrotrophs (Cheng et al. 
2014; Kim et al. 2016).

Table 2.2 List of important bacterial plant pathogens

Name of the pathogen Host plant of the pathogen
Name of the 
disease

Dickeya Potato tubers, bulbs of vegetables, and 
ornamental crops

Necrosis, blight, 
and soft rot

Erwinia amylovora Apple, pear Fire blight
Erwinia carotovora Carrots, potatoes, cucumbers, onions, tomatoes, 

lettuce
Soft rot

Erwinia chrysanthemi Chrysanthemums, maize, Dieffenbachia, 
Euphorbia pulcherrima, bananas, Philodendron

Soft rots and 
wilts

Pectobacterium 
atrosepticum

Potato Potato blackleg 
disease

Phytophthora infestans Potato, tomato Late blight of 
potato
Late blight of 
tomato

Pseudomonas syringae 
pv. tomato

Tomato, Arabidopsis thaliana, Brassica 
oleracea var. botrytis

Bacterial speck

Pseudomonas viridiflava Tomato, soybean, pepper Bacterial leaf 
blight

Pseudomonas syringae 
pv. syringae

Prunus sp., tomato, cereals, citrus, and kiwi Bacterial canker 
and blast

Ralstonia solanacearum Potato, tomato, banana, groundnut, tobacco Bacterial wilt
Xanthomonas campestris 
pv. Vesicatoria

Tomato, pepper Bacterial leaf 
spot

2 Fungal and Bacterial Biotrophy and Necrotrophy



28

2.2.2  Effectors Produced by Pathogens Disturb 
the Phytohormonal Signaling

Plant hormones like auxin, gibberellins (GAs), abscisic acid (ABA), jasmonic acid 
(JA), ethylene (ET), and salicylic acid (SA) have been implicated in regulating plant 
defense responses. The three main players extensively characterized for the defen-
sive roles till date are SA, JA, and ET.  It has been reported that SA signaling is 
involved in eliciting resistance to biotrophic and hemibiotrophic phytopathogens, 
while ET and JA provide resistance to plants against necrotrophs (Glazebrook 2005; 
Di et al. 2016). Many fungal pathogens produce phytohormone and mimic during 
the infection for altering host cell response (Inomata et  al. 2004). Many fungal 
pathogens themselves also produce plant hormones to disturb the host cell plant 
hormone signaling (Agrios 2005; Mobius and Hertweck 2009; Brodhun et al. 2013). 
Also many effector proteins synthesized by fungal pathogens have been shown to 
alter phytohormone biosynthesis and signaling pathways (Kazan and Lyons 2014).

In Ustilago maydis an increase in chorismate mutase 1 (Cmu1) that changes SA 
precursor chorismate into prephenate has been observed during infection process 
which alters SA biosynthesis pathway (Djamei et al. 2011). Sclerotinia sclerotio-
rum (a necrotrophic fungal pathogen) has also been shown to have SA-degrading 
effector protein (Penn and Daniel 2013). A secretory effector protein, SSITL 
(Sclerotinia sclerotiorum integrin-like), secreted by S. sclerotiorum has been shown 
to inhibit JA-regulated defense responses (Zhu et  al. 2013). PSE1 (penetration- 
specific effector 1), an effector secreted from the pathogen P. parasitica, affected 
auxin efflux (Evangelisti et al. 2013). ABA confers susceptibility to fungal patho-
gens, namely, B. cinerea and F. oxysporum (Audenaert et al. 2002; Anderson et al. 
2004).

2.2.3  Phytotoxins Released by Fungal Pathogens

Toxins released by fungal pathogens play an important role in pathogenicity 
(Mobius and Hertweck 2009; Stergiopoulos et al. 2013). These toxins damage the 
host cells thereby aiding in colonization of pathogen. These toxins are categorized 
into two classes: host-specific toxins (HSTs) and non-HSTs. HSTs are majorly syn-
thesized by Dothideomycetes (Wolpert et  al. 2002; Berestetskiy 2008). Various 
trichothecene phytotoxins (inhibits translation) are secreted by species of Fusarium 
for the proliferation inside the host plant (Desjardins et al. 2007). Fungal necro-
trophs also synthesize phytotoxic proteins like NEP1 (necrosis and ethylene- 
inducing protein) and NEP1-like proteins involved in host cell death and ROS 
production (Pemberton and Salmond 2004). AAL (a toxin released by Alternaria 
alternata) and Fumonisin B1 toxins secreted by fungal pathogen inhibit the ceramide 
synthesis and result in buildup of free sphingoid bases which results in the produc-
tion of ROS and host cell death (Abbas et al. 1994; Shi et al. 2007). Fumonisin B1, 
secreted by Fusarium verticillioides, lessens extracellular ATP and causes PCD.
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2.2.4  Significant Effector Proteins Secreted by Few Biotrophic, 
Hemibiotrophic, and Necrotrophic Fungi

2.2.4.1  Cladosporium fulvum
C. fulvum is a fungal pathogen which is biotrophic in nature and causes leaf mold 
disease of tomato (Thomma et al. 2005). Avr9, a 28 amino acid cysteine-rich effec-
tor protein of this genus, elicits HR in tomatoes. At the time of infection, C. fulvum 
secretes Ecp6 effector protein containing LysM chitin-binding domain. This domain 
and another effector, Avr4, bind to the chitin and prevent the host recognition (van 
Esse et al. 2007; Sánchez-Vallet et al. 2013). It also produces Avr2 effector mole-
cule which binds the cysteine proteases of plants and prevents the defense responses 
of plants (van Esse et al. 2008).

2.2.4.2  Ustilago maydis
U. maydis is a biotrophic fungus which is the causal agent of maize smut. It infects 
the aerial organs of maize and enters the cell wall with the help of special structures 
named as hyphae for deriving nutrition from the host plant (Brefort et al. 2009). 
During infection process 20% of its genes were found to be upregulated. Effector 
gene cluster deletion analysis was performed to delineate the function of different 
effector proteins in the infection process (Kamper et al. 2006). Pep1 effector of this 
genus codes for a 178 amino acid secretory protein and plays an important role dur-
ing the invasion process. It also inhibits the activity of apoplastic plant peroxidases 
thereby suppressing the immune response of plants (Doehlemann et  al. 2009; 
Hemetsberger et al. 2015). Hum3 (a hydrophobin domain and a repetitive repellent 
protein-like repetitive domain-containing protein) and Rsp1 (repetitive secreted 
protein 1, a protein with internal hydrophilic repeats) effector proteins from U. may-
dis have been shown to be significant for cell adhesion during the infection process 
(Muller et al. 2008). Another effector See1 (Seedling efficient effector 1) has been 
shown to be involved in reactivating DNA synthesis important for tumor prolifera-
tion in leaf cells (Redkar et al. 2015).

2.2.4.3  Blumeria graminis
It is an obligate biotrophic fungus and causes powdery mildew disease on barley 
and wheat. It forms filamentous hyphae for infecting the leaves and haustoria for 
deriving nutrition from its host. More than 500 candidate secreted effector proteins 
(CSEPs) also called as Blumeria effector candidates (BECs) have been identified in 
this fungus. Eight such BECs including BEC1054 (RNase-like effector) are required 
for the formation of feeding structure, i.e., haustoria (Pennington et al. 2016).

2.2.4.4  Botrytis cinerea
B. cinerea is a broad host range necrotrophic fungus and is the causal agent of gray 
mold disease. It penetrates the host epidermal cells by secreting various cell wall- 
degrading enzymes, cutinases, proteases, lipases, oxalic acid, and a nonhost- 
selective toxin named as botrydial (Prins et al. 2000; Kars et al. 2005).
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2.2.4.5  Sclerotinia sclerotiorum
S. sclerotiorum is a necrotrophic fungus that infects more than 400 plant species. It 
secretes various enzymes like glucanases, pectinases, cellulases, and proteases for 
disrupting the tissue (Bolton et al. 2006). It also synthesizes oxalic acid during the 
infection process to suppress the host immune responses (Guimaraes and Stotz 
2004). It causes necrosis of crucifers by the secretion of polyketides (Pedras and 
Ahiahonu 2004). A secretory protein of S. sclerotiorum, SSITL (SS1G_14133), has 
also been shown to suppress the host immune response (Zhu et al. 2013).

2.2.4.6  Alternaria brassicicola
A. brassicicola is a broad host range necrotrophic pathogen known to synthesize 
various toxins important for pathogenesis. Host-specific toxins are secreted by 
Alternaria alternata, another necrotrophic fungus, to suppress host resistance 
(Tsuge et  al. 2013). Cell wall-degrading enzymes and lipases produced by this 
genus affect the various cellular process of the host (Cho 2015).

2.2.4.7  Magnaporthe oryzae
It is a hemibiotrophic fungus, which causes rice blast disease. It forms appressorial 
pegs for the penetration of leaf cuticle and epidermal cells of the host. The effector 
proteins of this genus accumulate in the biotrophic interfacial complex (BIC, a 
lobed structure formed at the tip of invasive hypha) (Khang et  al. 2010). BAS1, 
PWL2, BAS2, BAS3, BAS4, and AvrPita1 are the different effector proteins found 
to be upregulated during the infection process (Mosquera et al. 2009; Khang et al. 
2010). Another effector protein of this genus named as AVR-Pii has been shown to 
suppress the plant immune response by inhibiting the activity of host Os-NADP-ME 
(a rice NADP-malic enzyme2 protein), which is important for the production of 
ROS (Singh et al. 2016).

2.2.5  Bacterial Biotrophy and Necrotrophy

Phytopathogenic bacteria are accountable for the devastating damage to the agricul-
ture. The interaction between bacteria and its plant host is very dynamic. Bacteria 
cause many diseases in higher plants by entering the intercellular spaces through the 
natural openings, stomata, and wounds. Fire blight, halo blights cankers, galls, and 
leaf spots are the various diseases elicited by the bacteria in higher plants. They 
have varied infection strategies and belong to both the biotrophic and necrotrophic 
categories of pathogens. Necrotrophic bacteria follows the brute force strategy in 
which the bacteria rapidly kill the parenchymatous tissues of the host plants, while 
biotrophic bacteria reproduces within the host cell and slowly kills the host (Collmer 
and Bauer 1994). Necrotrophic bacteria trigger hypersensitive response (HR), i.e., a 
localized programmed cell death of host plant that restricts the pathogen by cutting 
off the nutrient supply; cell death occurs that enhances the colonization of the bac-
teria and acts as a sign of successful infection (Van Kan 2006). For a successful 
infection to occur, phytopathogenic bacteria have many genes that are induced when 
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the contact between bacteria and plant is established. Using an in vivo expression 
technology, Boch et  al. (2002) identified several genes that are induced when P. 
syringae pv. tomato attacks Arabidopsis thaliana. Few bacteria employ quorum- 
sensing mechanism to counter the host defense (Alfano and Collmer 1996).

Sometimes it becomes difficult to place the bacterial pathogens in a particular 
class as we have examples like Pseudomonas syringae which can be placed in bio-
trophic, hemibiotrophic, and partly in necrotrophic category; Ralstonia sola-
nacearum is both a necrotrophic and biotrophic bacteria, Xanthomonas species are 
biotrophic, and Erwinia amylovora is often mentioned under necrotrophic category 
(Kraepiel and Barny 2016).

2.2.6  Basis of Bacterial Pathogenicity: The HRP System

The necrotrophic bacteria elicit the HR response using hrp genes (hypersensitive 
response and pathogenicity). These genes were first identified in Pseudomonas 
syringae pv. syringae (brown spot of bean) and were found to be present in clusters 
and are essential for the transport of the Avr gene-derived signal from the bacteria 
into host plant cells (Niepold et al. 1985; Lindgren et al. 1986). hrp genes have also 
been identified in Gram-negative bacterial pathogens, namely, Xanthomonas camp-
estris pv. vesicatoria, Erwinia amylovora, and Ralstonia solanacearum. Mutation 
in any one of the hrp genes leads to failure of pathogen invasion (Van Gijsegem 
et al. 1993). Hrp and Hrc (hypersensitive response and conserved) genes encode the 
type III secretion system (TTSS) that helps in the injection of bacterial virulence 
“effector” proteins into host cells (Alfano and Collmer 2004; Cornelis and Van 
Gijsegem 2000). The HRP system delivers various effector proteins which promote 
the induction of disease by suppressing the basal defense mechanism of host plant 
and also triggers HR response (Chang et al. 2005; Collmer et al. 2002; Zwiesler- 
Vollick et al. 2002). These effector proteins are designated as hairpins, which are 
cysteine-lacking, glycine-rich proteins (Bauer et al. 1995), for example, Avr pro-
teins (Keen 1990), Hop (Hrp outer protein, Alfano and Collmer 1997) of 
Pseudomonas, Xop (Xanthomonas outer protein; Noel et  al. 2001), or Pop 
(Pseudomonas outer protein; Arlat et  al. 1994) of Ralstonia. NLPs or Nep1-like 
proteins are a new family of proteins identified in pathogenic bacteria that induce 
HR response in plants (Pemberton and Salmond 2004). Various reports on the local-
ization of effector proteins suggested nucleus and plasma membrane to be their 
target site (Yang and Gabriel 1995; Deslandes et al. 2003).

2.2.7  Effector Proteins Synthesized by the Bacteria

Phytopathogenic bacteria synthesize effector proteins also named as double-edged 
swords during the course of infection. These proteins enter the host cell cytoplasm 
and helps in suppressing the plant immune system, thereby playing an important 
part in virulence and pathogen survival (Mattoo et  al. 2007; Shames and Finlay 
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2012). These effector proteins target various processes of host cell like RNA metab-
olism, secretion of proteins, and activation of kinases (Kaffarnik et al. 2009). These 
effector proteins can be recognized by the plant R proteins (resistance proteins) 
leading to development of plant resistance against the pathogen. Such proteins are 
called as avirulence proteins (Avr). The pathogen has an Avr (avirulence) gene that 
interacts with the corresponding R (resistance) gene of the host plant leading to 
establishment of HR and avirulence preventing development of disease (Flor 1971). 
Reports also suggest that pathogens deploy the secretion system of host plant inva-
sion (Kaffarnik et al. 2009). Pathogenic bacteria Pseudomonas syringae have been 
shown to secrete about 30 effector proteins into the cytosol of plant (Chang et al. 
2005). One of the effector proteins of Pseudomonas syringae named as AvrPto has 
been shown to bind the receptor kinases of Arabidopsis and blocks the immune 
response (Zong et al. 2008; Xiang et al. 2008).

2.2.8  Extracellular Polysaccharide and Toxins Produced 
by Bacteria

Extracellular polysaccharides (EPSs) produced by the bacteria alter the defense- 
activating signal, block the xylem, and protect the bacteria from the various envi-
ronmental stresses (Denny 1995). EPSs secreted by P. syringae lead to the 
development of chlorotic and necrotic symptoms (Corsaro et al. 2001). The toxins 
mainly the secondary metabolites or peptides produced by various necrogenic bac-
teria are important for pathogenesis or have an antimicrobial activity that reduces 
the microbial competition (Gross 1991). Coronatine, a toxin produced by P. syrin-
gae, causes chlorosis in plants and also aids the entry of bacteria by triggering the 
opening of stomata and by defeating the host defenses (Brooks et  al. 2005; 
Uppalapati et al. 2007). Some pathovars of P. syringae produces antimetabolite tox-
ins (mangotoxin, phaseolotoxin, and tabtoxin) that inhibit the biosynthesis of aro-
matic amino acids thereby interfering with the nitrogen metabolism of host plant 
(Snoeijers et al. 2000).

2.2.9  Plant Cell Wall-Degrading Enzymes (PCWDE)

Soft rot pectinolytic bacteria under necrotrophic category, namely, Erwinia caroto-
vora, E. chrysanthemi, Pseudomonas viridiflava, Pectobacterium, and Dickeya, 
using type II secretion system secrete plant cell wall-degrading enzymes (pectic 
enzymes, cellulases, proteases, and hemicellulases) that soften the host tissue and 
kill the cells and also help in nutrient uptake (Perombelon and Kelman 1980; Barras 
et al. 1994). A single pectate lyase (Pel) is secreted by P. viridiflava (Liao et al. 
1988), while E. carotovora and E. chrysanthemi produce complex of pectic enzymes 
(Barras et  al. 1994). Investigation also suggests that PCWDE are produced in a 
population density-dependent mechanism called quorum sensing (QS). It plays a 
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very important role in regulating bacterial pathogenesis (Whitehead et al. 2001). In 
case of soft rot-causing bacteria Pectobacterium atrosepticum, QS control the pro-
duction of cell wall-degrading enzymes (Liu et al. 2008).

2.3  Plant Defense Responses Against Pathogen Attack

Necrotrophs and biotrophs confront almost the same basal plant defenses, with the 
major component being the waxy cuticle layer and rigid cell walls (Heath 2000a, 
2002). Plants recognize pathogens on the basis of pathogen-associated molecular 
patterns (PAMPs). PAMPs are conserved molecules important for pathogen and 
characterize a class of microbes (Bent and Mackey 2007; Willment and Brown 
2007). Examples of PAMPs include bacterial flagellin (Zipfel et al. 2004), fungal 
xylanase (Ron and Avni 2004), and chitin (Kaku et  al. 2006; Miya et  al. 2007). 
Detection of these PAMPs by pattern recognition receptors (PRRs) leads to a 
PAMP-triggered immune response (PTI) (Bent and Mackey 2007; Hückelhoven 
2007; Zipfel 2008, 2009). This comprises the activation of a mitogen-activated pro-
tein (MAP) kinases followed by WRKY transcription factor phosphorylation lead-
ing to induction of plant defense responses (Heath 2000a; Dodds and Rathjen 2010). 
Plant responses associated with PTI include callose deposition in the cell wall, pro-
duction of reactive oxygen species (ROS), and induction of pathogenesis-related 
proteins and defensins (Silverstein et al. 2005; van Loon et al. 2006). In addition to 
PAMPs, plant cells can recognize degraded damaged host cells mainly polysaccha-
rides called damage-associated molecular patterns (DAMPs) (Lotze et  al. 2007; 
Matzinger 2007; Hückelhoven 2007). Effector-triggered immunity response hap-
pens when an Avr gene is recognized by a plant R gene (Heath 1998, 2000b; 
Tudzynski and Sharon 2003; Schulze-Lefert 2004; Ferreira et al. 2007). ETI is asso-
ciated with the production of reactive oxygen species (ROS) which results in HR 
response at the point of infection (Heath 1998, 2000b; Lamb and Dixon 1997; 
Torres and Dangl 2005).

2.4  Use of Effector Proteins in Plant Breeding

Effector molecules are the pathogen-induced molecules that help the bacteria or 
fungi to invade plants. “Effectoromics” is a high-throughput functional genomics 
approach used to identify the R genes, and it has played a very important role in 
modern resistance breeding. For the first time, this strategy was deployed for 
Phytophthora infestans and potato, leading to identification of many R and avr 
genes (Vleeshouwers et al. 2008, 2011). Detailed characterization of the effector 
molecules will help in hastening the R gene cloning and determining the redun-
dancy and can help in deploying R gene in agriculture (Vleeshouwers and Oliver 
2014).
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2.5  Prospects

Plant-pathogen interactions are highly coevolved and dynamic at molecular and cel-
lular levels. The model illustrating the interaction between plants and fungal/bacte-
rial phytopathogens (necrotrophs/biotrophs) has been depicted in Fig. 2.1. Despite 
this substantial progress in this field, a critical challenge still remains in understand-
ing the mechanism by which fungal/bacterial pathogens cause the disease and how 
plants respond to the elicitors secreted by these pathogens during invasion. Also it 
is not known whether fungi also have their own transport machinery, analogous to 
the bacterial type III secretion system. Research focused on the identification of 
diverse virulence factors important for pathogenesis will provide information about 
the genes present in the pathogenicity islands, which will definitely catapult our 
understanding of fungal and bacterial pathogenesis. In the coming years, amalga-
mation of genomics, transcriptomics, proteomics, and metabolomics data will help 
us in clarifying the various genes encoding different proteins important in plant- 
pathogen (biotroph/necrotroph) interactions. The study of interplay between the 
effector proteins secreted by pathogen and defense-promoting signaling in host 
cells will help us in elucidating the mechanism of disease development. It is very 
important to develop new methods to manage the biotrophic and necrotrophic plant 
pathogens. Plant biologists studying these plant-pathogen interactions will undoubt-
edly help in saving our crops from the devastating attacks.

Fig. 2.1 Model for plant/pathogen (necrotroph/biotroph) interaction. PAMPs pathogen- associated 
molecular patterns, PCWDE (plant cell wall-degrading enzyme), EPSs extracellular 
polysaccharides
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Glossary

Appressorial pegs It is a specialized cell characteristic of fungal plant pathogens 
and is used during infection process.

Effector proteins Proteins secreted by bacterial pathogens during the infection 
process and help in suppressing the immune system of host.

Extracellular polysaccharides High molecular weight sugar polymers synthe-
sized by microorganisms. They play important roles in protecting the microor-
ganism and also mediate their pathogenicity.

Hypersensitive response It is a defense mechanism evoked by pathogens and 
involves localized cell death to stop the spread of infection.

Phytohormone Chemicals or signal molecules synthesized by plants and play an 
important role in their growth and development.

Phytopathogens Pathogenic bacteria, viruses, or fungi which infect plants and 
cause many plant diseases.

Quorum sensing It is a phenomenon of cell-cell communication which helps bac-
teria to sense the cell density and coordinate their behavior accordingly.

Small RNAs Noncoding RNA molecules which are less than 200 nucleotide in 
length and have a role in RNA silencing and regulation of gene expression.

Virulence The extent of injury caused by pathogen to its host.
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3Plant–Virus Interactions
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Abstract
Viruses are small pathogens not visible under light microscope and are causal 
agents for many common plant diseases. They lead to heavy economic losses in 
crop production and quality in different parts of the world. The simplest viruses 
are composed of nucleic acid and protein coat. Plant viruses mostly have single- 
stranded ribonucleic acid (ssRNA), but in few cases single- or double-stranded 
DNA may also be present. They are obligate parasites and require host machin-
ery for their reproduction. They make their passive entry into plant cells through 
the wounds caused by either physical injuries, through environmental factors, or 
by the vectors which could be insects, nematodes, fungi, and even mites. Viral 
RNA disassembles, replicates, and converts its mRNA to proteins in the host 
cytoplasm using energy and proteins from the host cell. Once viruses enter the 
host, they move from infected cells to healthy neighboring cells locally. Long- 
distance transport via the vascular system for systemic infection is also the key 
feature of plant viruses. In response to the infection by viruses, plants also 
develop certain defense mechanisms. In this chapter the aspects related to move-
ment of viruses in plant system, general response of plants to viruses, defense 
mechanisms developed by the plant like RNA silencing, virus-encoded suppres-
sor proteins, development of disease-free tissues, and future aspects are 
considered.
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3.1  Introduction

About 15% of the global crop production is lost due to plant diseases highlighting the 
fact that there is a continuous threat to the plants throughout the world. And more 
than one third of these plant diseases are thought to be caused by phytopathogenic 
viruses (Boualem et al. 2016). Viral infections pose serious threat to agricultural and 
horticultural crops and cause huge economic loss. Plant virus infections cannot be 
directly controlled by the use of various chemicals and insect vector management, 
although virus population and distribution can be restricted to some extent through 
the use of these chemical treatments. Thus the development of disease- resistant cul-
tivars is a major challenge in plant breeding research because the usage of chemicals 
has more negative effect on humans and surrounding environment (Islam et al. 2017). 
Viruses being the most abundant life forms on earth can be found in all kingdoms of 
life. About one third of all the viruses are represented by plant viruses. Plant viruses 
are simple, obligate, intracellular parasites. One of the important characteristics 
shared by all viruses is their relatively small genome size, which has a very limited 
coding capacity. Viruses are nucleic acid-based pathogens and packed with a protein 
called capsid. They contain single-stranded (ss) or double- stranded (ds) RNA or 
DNA genome. For instance, a vast majority of known plant viruses are positive 
ssRNA viruses that typically encode not more than a dozen proteins. They lack nec-
essary components for their independent survival, so they rely entirely on host 
machinery for their life cycle. They use protein and energy from the host cell to 
perform different processes inside/outside the host cytoplasm like entry into plant 
cell or uncoating of nucleic acid, translating viral proteins, viral nucleic acid replica-
tion, intracellular and systemic movement, encapsulation and suppression of host 
defenses on their accumulation, progeny virions assembly, and further transmission 
(Nelson and Citovsky 2005). They enter their host cells passively either through 
wounds caused by environmental physical injuries or by different vectors, which 
may be insects, nematodes, soil fungi, or mites. The obligate intracellular nature of 
viruses provides a platform for host–virus interaction (Pallas and Garcia 2011).

Viruses can replicate within the living cells of their respective hosts using their own 
enzymes like RNA-dependent RNA polymerase, DNA replicase, or reverse transcrip-
tase, whereas subviral agents called viroids use RNA polymerase of their hosts for 
replication. Viroids till now are considered to be the smallest plant pathogens. They 
are nonprotein-encoding and highly structured, single-stranded RNA molecules 
(Navarro et al. 2012). The absence of a protein coat distinguishes viroids from viruses. 
Viroids completely have different ways of transmission as compared to plant viruses 
because they are not enveloped and do not encode any (movement) proteins. The most 
important transmission route is believed to be mechanical transmission through physi-
cal contact with insect parts and/or plant products (e.g., pollen).

During each stage of viral cycle, variant interactions are generated between the 
plant and the virus, which might lead to either a compatible or non-compatible rela-
tionship between virus and host plant. The development of disease in the plant is an 
exception and not an outcome of the viral infection as plants are capable of counter-
acting the harmful effects of viruses. The resistance is offered either through passive 
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means where essential host susceptibility factors are absent or through the presence of 
defensive physical and chemical barriers which the virus has to cross. Once the virus 
has crossed these barriers, then it is exposed to certain nonspecific defense reactions. 
The virus causes the infection only if it produces virulence factors against these 
defense mechanisms, which may or may not be challenged by the plants depending on 
the defense response to virulence factors of virus (Jones and Dangl 2006).

Various plant proteins (like RNA polymerases, RNA helicases, Dicer-type 
dsRNA RNases, ssRNA RNases) induced by viral RNA participate in antiviral 
defense response via RNA silencing mechanism. Viruses have to escape this univer-
sal mechanism for its successful infection in the plant. The strategy that is generally 
adopted by the virus is the production of silencing suppressors (Valli et al. 2009). 
Viruses also have to complete their reproductive cycle apart from overcoming 
defense barriers. The positive polarity viruses uncoat and translate the genomic 
RNA once they enter the plant cell followed by their movement to neighboring cells 
and finally spread all over the plant (Fig. 3.1). Therefore undertaking plant–virus 
interaction mechanism is a better way to develop novel tools for plant protection 
against virus attack. In this chapter, we have highlighted the present state of knowl-
edge about plant–virus interactions.

3.2  Environment and Evolution Modulate Plant 
Pathogenesis

Since the beginning of virology, a primary motivation for the study of plant viruses is 
that these are important pathogens of plants. And a major area of research has focused 
on viral plant pathogenesis (study of the capacity of viruses to cause diseases in 

Cellular Stress Response Developmental Defects

Phytohormones Silencing Suppressors

Hormone Responsive Genes miRNA Function

Salicylic Acid Accumulate Viral Proteins

Defense Genes Heat Shock Proteins

Viral Infection

Fig. 3.1 Host plant and virus interactions leading to the expression of defense-related and heat 
shock genes under the control of signal transduction pathways. Viruses also cause developmental 
defects as they disrupt the phytohormone signaling and regulatory microRNAs

3 Plant–Virus Interactions



46

plants). Since the identification of first virus genes in mid-1980s that had the proper-
ties of avirulence (Avr) factors or that encoded functions associated with the develop-
ment of specific symptoms, the knowledge on plant virus pathogenesis has increased 
(Baughman et al. 1988). An obvious antagonistic plant–virus interaction has focused 
on those viruses that cause disease in crops. However, recently, the concept of viruses 
being commensals or even mutualists has been emphasized, although based on lim-
ited experimental evidence. Still, plant pathogenesis is an ongoing subject of debate, 
and it is highly important to understand which factors favor the evolution of viruses 
toward pathogenicity and under which conditions viruses will act as mutualists or 
commensals. Although much studies on plant–virus interactions in wild ecosystems 
have not been undertaken (Roossinck and Garcίa- Arenal 2015), evidence point toward 
asymptomatic virus infection in wild plants (Stobbe and Roossinck 2014). For viruses 
that infect wild plants, the interactions affecting the composition and dynamics of 
wild plant ecosystems have been well documented (Prendeville et al. 2014).

However, the universal outcome of plant–virus interactions is not always a disease. 
Viruses that lead to manifestation of disease in some host plants can be asymptomatic 
in others emphasizing the role of plant–virus interactions in plant pathogenicity. The 
interaction between viral infection and environmental conditions may change the 
host–virus interaction from detrimental to beneficial to the host. For example, the 
effects of CMV (Cucumber mosaic virus) infection on Arabidopsis thaliana plants 
over a range of temperature and light intensity conditions varied according to plant 
genotype and environment, infection being detrimental, neutral, or beneficial to the 
host plant in terms of viable seed production (Roossinck and Garcίa-Arenal 2015).

Environmental modulation during pathogenesis does not involve any genetic 
change either in the virus or the host. However, it has been observed that change in 
the environment can result in virus evolution towards more severely pathogenic 
genotypes. For several plant–virus interactions, symptom expression has often been 
considered as an alternative to virulence (Doumayrou et al. 2013). Although evi-
dences fail to show any correlation between virus multiplication and virulence, the 
trade-off hypothesis (there is evolution of highly virulent isolates of virus in envi-
ronmental conditions that favor high rates of horizontal transmission) can be useful 
for the analyses of virulence/pathogenicity evolution in plant viruses (Stukenbrock 
and McDonald 2008). Diversity of habitat also modulates the evolution of patho-
genesis. Viruses with a narrow host range have higher host availability in agricul-
tural habitats than in wild resulting in higher rates of horizontal transmission. An 
increase in the transmission rate may result in the evolution toward high pathogenic-
ity. Factors favoring or hindering the evolution of high pathogenicity in specific 
environments or across environments await future research.

3.3  Plant–Virus Relationships

The studies conducted on extremely complex plant–virus interactions for more than 
half a century have led to a partial elucidation of the mechanisms linked to the accu-
mulation of viruses inside host cells, virus movement within the plant, and the plant 
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defense mechanisms. Most of the plant virus combinations do not necessarily lead 
to effective infections because virus must be able to find appropriate supportive host 
factors and should be able to escape the host defense responses. A virus may not be 
always pathogenic even though it is able to replicate. Numerous viral and host com-
ponents interact within the context of viral needs, including host proteins, cell mem-
branes, lipids, and metabolites (Stapleford and Miller 2010). Developmental 
abnormalities and other phenotypic manifestations described as disease symptoms 
appear only when virus infection disturbs host physiology. It is only at this stage 
that pathogenesis takes place (Pallas and Garcίa 2011). Numerous interactions 
between virus and host factors involved in the replication of plant viruses having 
either positive or negative effects result in an outcome of the infection. Both the 
factors, i.e., defense responses raised by the host against the infectious agent and 
effects of virus replication in the host, can lead to pathogenesis. Thus a single virus 
factor can even be the main responsible agent of the pathogenic process (Nagy and 
Pogany 2012).

Viruses do not normally cause the death of the host because they need living tis-
sue for their multiplication, although there are exceptions. Plant viruses need to 
counter plant defense mechanisms and to usurp the functions of different host fac-
tors in order to complete their life cycle. Plants can defend themselves against vari-
ous parasites and pathogens like insects, animals, other parasitic plants, viruses, and 
bacteria as they have well-developed recognition mechanisms which act as barriers 
preventing infection in the case of pathogens. Therefore, an interaction and/or inter-
ference is needed between viral and host components which, in some instances, 
would lead to symptom development through an alteration in the plant physiology. 
According to recent discoveries, plant–virus interactions are also known to be 
involved in plant development such as hormonal regulation, cell-cycle control, 
endogenous transport of macromolecules, etc. Nevertheless, the identities of all host 
factors involved in the viral cycle are still unknown (Hull 2009). However, the inter-
actions differ widely in the mechanisms involved in the display of symptoms. When 
there is viral infection in the plant, both compatible and incompatible host–virus 
interactions exist.

3.3.1  Compatible Host–Virus Relationships

If the host is not able to recognize the virus, the two develop a compatible interac-
tion, which may be favorable for the virus. In such a relationship, virus infects the 
host cell, and, depending on where the virus symptoms appear, local and systemic 
hosts are distinguished. Sometimes both the symptoms appear simultaneously. 
Local and systemic symptoms are called external symptoms.

A variety of disease symptoms can be observed due to viral infections in plants, 
like leaf rolling, wilting, yellowing, stunting necrosis, and mosaic pattern forma-
tion. These symptoms were found to be of great commercial importance even before 
viruses were discovered, for example, the appearance of flame-like streaks in tulip 
flowers called “tulip mania” which were sold at very high prices in Netherlands in 
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the seventeenth century. It was later found to be a result of infection by Tulip break-
ing virus (Dekker et al. 1993).

Apart from external symptoms, internal symptoms or microsymptoms caused by 
virus infection are not uncommon. Some plants can react by forming special inclu-
sion bodies in the cytoplasm of infected cell. For example, light microscopic studies 
have revealed the formation of pinwheel inclusion bodies in the cytoplasm of 
Potyvirus-infected cells. Symptoms of viral infection can occur on all parts of the 
plant like the root, stem, leaf, and flower, but most commonly they occur on the 
leaves of the susceptible hosts (Table 3.1).

Hypersensitive reaction (HR) is also a special type of host–virus relationship to 
avoid spreading of virus particles or nucleic acids. This mechanism is a survival 
strategy in which the infected cell dies before the virus can be translocated to other 
cells. Thus, virus infection might not lead to symptoms although the plants are sus-
ceptible to virus infection. Plants are thus able to confine virus particles at the site 
of infection. This trait of producing HR could be used in breeding procedures for 
resistance against viruses.

Viral symptoms can be greatly influenced through environmental factors. For 
example, TMV at lower temperature produces local chlorotic and necrotic lesions, 
but at higher temperature virus can be translocated in Nicotiana tabacum Xanthi 
plants. There may be absence of external symptoms although viral movement from 
cell to cell can be perceived in a special type of compatible host–virus relationship 
as illustrated in Medicago sativa infected by AMV (Alfalfa mosaic virus). The diag-
nosis of viruses in symptomless host can be detected by other specialized methods 
(Stange 2006).

3.3.2  Non-compatible Host–Virus Relationships

A non-comatible host-virus relationship develops when the host plant recognizes 
the virus. In this case, a series of defense reactions are induced in the host which 
obstructs the replication of virus and also movement within the host. When a host 
plant possesses extreme immunity, viruses cannot infect a host, external symptoms 

Table 3.1 The most frequently observed viruses, their hosts, and symptoms in compatible host–
virus interaction

Virus Host Symptoms
Potato virus (PVY) Solanum tuberosum Leaf drop (LED)

Nicotiana tabacum Necrosis (N)
Chenopodium quinoa

Tobacco mosaic virus (TMV) N. tabacum Necrotic lesions (N)
N. glutinosa
N. sylvestris

Tomato mosaic virus (ToMV) Lycopersicon esculentum Leaf deformation (Ldef)
Cucumber mosaic virus Cucumis sativus Mosaic (M)
Alfalfa mosaic virus (AMV) Chenopodium album Yellow mosaic
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do not appear, and virus cannot be detected. The resistance of host plants to viruses 
may be qualitative or quantitative. In the case of qualitative resistance, there is a 
special relationship between the host’s resistance genes and viral genes which can 
be expressed as hypersensitivity or resistance to the spreading of viruses (Kiraly 
et al. 2008), whereas in quantitative resistance, specific relationship between their 
genes cannot be observed. This type of resistance is in the form of resistance to viral 
replication and spreading, field resistance, and tolerance to plant disease.

3.4  Methods of Diagnosis of Viruses

To establish a control program for any plant disease specifically viral disease, it 
must always be preceded with an approved and accurate diagnosis. Lack of correct 
information on the causal agents of viruses, their means of spreading to distances, 
and their survival strategies could lead to a total failure in an attempt to control plant 
disease, including viral diseases. For a correct and definitive diagnosis of a viral 
disease, several methods can now be used. But at the beginning of the study of plant 
virology, the causal viruses were identified and characterized through the external 
symptoms on plants (Purcifull et  al. 2001; Lima et  al. 2012). Because different 
viruses due to their synergistic effect may cause similar symptoms and same virus 
can cause different symptoms, it is now believed that the symptoms on plants may 
be an unreliable source of identifying a plant disease. The symptoms caused by 
viruses may vary according to the plant variety, environment, viral strain, and tem-
perature. Some plant species show different symptoms of virus infections, but there 
are some which do not show any symptoms at all. For example, Datura stramonium 
hosts PVX (Potato virus X) but is resistant to PVY. It is therefore almost impossible 
to diagnose plant virus infection by just observing host symptoms. Still, for the 
denominations of plant virus, the original symptoms are of great importance, 
although several other methods are additionally used for a correct and definite diag-
nosis of a viral plant disease. For the identification of viruses, several laboratory 
methods have now been developed and adapted (Fig. 3.1). The important ones are 
discussed below.

3.4.1  Serological Assays: Traditional Molecular Method 
of Disease Detection

One of the easiest and specific methods involving a rapid and precise identification 
of plant viruses is serology (Purcifull et al. 2001). Because the viruses cannot be 
cultivated as other pathogens, bacteria, and fungi can be, therefore serological 
assays were developed for the identification and characterization of plant viruses. 
Pathogens can be detected by using polyclonal and monoclonal antisera and tech-
niques such as enzyme-linked immunosorbent assay (ELISA), Western blots, 
immunostrip assays, dot–blot immune-binding assays, and serologically specific 
electron microscopy (SSEM). The first and most widely used immunodiagnostic 
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technique was ELISA in the 1970s. Because of its high-throughput potential, speci-
ficity, adaptability, economic advantage in the use of reagents, and sensitivity (Clark 
and Adams 1977), the virus particles at very low concentrations could be detected, 
and a large number of samples can be indexed in a relatively short period of time. 
These methods are relatively simple involving antigen-antibody reactions in vitro, 
and any sophisticated and expensive equipment is not required. The advent of 
ELISA has facilitated the use of serology for virus identification on a large scale, 
and, thus, ELISA can be used in a wide range of situations (Purcifull et al. 2001; 
Lima et al. 2012). Direct and indirect ELISA are the most frequently used methods 
for the diagnosis of plant virus diseases although different variations of this sero-
logic technique have further been developed (Lima et al. 2012).

The following variations of the ELISA technique were successfully used for the 
detection: indirect ELISA or the plate-trapped antigen technique (PTA-ELISA), 
immune virus particle precipitation followed by ELISA (IP-ELISA), and a simple 
kit for plate-trapped antigen ELISA (Dorokhov and Komarova 2016).

Polyclonal antisera for many viruses and bacteria have been developed for com-
mercial use or research labs and have been used in numerous protocols, but their 
frequent cross-reactivity inspired the development of more effective monoclonal 
antisera using hybridoma technology (with cell lines with specificity to single epit-
opes). Because of the difficulty in producing a good virus-specific antiserum, serol-
ogy for plant virus identification and detection becomes a serious limitation. Purified 
plant viruses or different types of viral protein used for immunizing warm-blooded 
animals can be used for preparing most of the antisera used in plant virus identifica-
tion and detection. For example, most plant viruses like PLYV can serve as good 
and effective antigens stimulating the production of specific antibodies that can be 
used in different serologic tests. ELISA procedures (using both monoclonal and 
polyclonal antibodies) and rapid detection kits are commercially available for 
numerous taxa.

3.4.2  Molecular Techniques or Nucleic Acid-Based Methods 
for Virus Detection

Usage of molecular techniques for plant virus identification and characterization is 
increasing throughout the world although serology has been used extensively for the 
same on a large scale. Several molecular methods have now been developed, out of 
which some are DNA based like fluorescence in situ hybridization (FISH), many 
PCR variants (PCR), real-time PCR (q-PCR), and DNA fingerprinting, while others 
are RNA based like reverse transcriptase PCR (RT-PCR) and nucleic acid sequence- 
based amplification (NASBA). Reverse transcriptase polymerase chain reaction has 
been shown to be a suitable method of research with RNA plant viruses (Lima et al. 
2012). These enable a rapid and accurate detection and quantification of pathogens 
and therefore can overcome uncertain diagnosis or pathogen taxonomy. However, 
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reproducible and efficient protocols are needed for critical preparation of samples 
required during this method. To avoid the presence of inhibitory compounds that 
compromise detection, many published protocols for RNA and DNA isolation were 
developed. The primary compounds interfering with these methods include poly-
saccharides, phenolic compounds, or humic substances from plants or other sub-
strates. Different genomes such as ssRNA, ssDNA, or dsDNA have been used for 
several different protocols developed for PCR-based methods. To extract nucleic 
acids from different types of plant material, many commercial kits have been spe-
cifically designed and widely used. However, these methods are not always effec-
tive with all types of plant material. Each combination of pathogen and plant needs 
to be evaluated before these can be adopted for regular detection. For example, loss 
of production may vary from 20% to 100% depending on which begomovirus is 
causing tomato yellow leaf curl disease (TYLCD), and molecular analysis seems to 
be the only way by which different begomoviruses can be distinguished (Davino 
et al. 2006). However, PCR and RT-PCR have become attractive and efficient meth-
ods for the diagnosis of plant virus diseases, because of their power to amplify a 
target nucleic acid present at an extremely low level in a complex mixture of heter-
ologous sequences. Mumford et al. (2000) developed a novel real-time quantitative 
PCR assay for the detection and quantification of plant viruses.

3.4.3  Innovative Detection Methods

Because many pathogens like nematodes, fungi, bacteria, viruses, and viroids can 
simultaneously affect cultivated plants, therefore relatively novel approaches detect-
ing different infections in the same plant and detecting pathogen at presymptomatic 
to early spread stages are highly desirable. Novel methods allow detection of patho-
gen infections when symptoms are still unclear and limited to a few plants only. 
Traditional methods, on the other hand, can detect pathogens only at a later symp-
tomatic stage.

3.4.3.1  Lateral Flow Microarrays (LFM)
This method allows rapid, hybridization-based nucleic acid detection and utilizes 
strong and reliable host plus pathogen biomarkers discovered through transcriptomic 
approaches to easily visualize the colorimetric signal. These arrays are built on minia-
turized lateral flow chromatography nitrocellulose membrane. This method mini-
mizes the need for expensive laboratory instruments, has detection limits similar to 
microarrays, and needs less time for hybridization. Key plant metabolites of primary 
and secondary metabolism can be used as biomarkers for different environmental 
stresses or pathogen infections, and they have been widely identified through metabo-
lomics. For example, highly interactive proteins (acting as possible indicators of plant 
health status) such as dehydrins or heat shock proteins upregulated by different envi-
ronmental factors can be identified by an OMIC approach (Dandekar et al. 2010).
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3.4.3.2  Methods Based on the Analysis of Volatile Compounds 
as Biomarkers

Many volatile organic compounds (VOCs) are emitted from leaf surfaces into their 
immediate surroundings that serve vital functions in growth, communication, 
defense, and survival (Baldwin et al. 2006). VOCs are low molecular weight biomol-
ecules and terminal metabolites of the host plant. VOCs have a high vapor pressure 
and low boiling point which can indicate physiological health status of the plant. 
They generally exist in the gaseous phase under standard temperature and pressure. 
A new avenue of research is opened by VOC profiling which may detect mechanisms 
for “plant-to-plant” and “plant-to-insect” communication. It provides with an ability 
to frequently and noninvasively monitor the health status of high- value commodity 
crops. This method offers potential for immediate applications within the plant sci-
ences gaining new insights into host responses to pathogens and abiotic stressors. 
Development of hardware and software tools leading to novel analytical methods and 
instrumentation is required to make and interpret these data sets, which is critical to 
bring these concepts into the field. Several studies have been done involving VOC 
profiling of plants using gas chromatography mass spectrometry (GC-MS) like 
investigations into Cucumber mosaic virus (CMV) through VOC profiling. CMV-
infected cultivated squash (Cucurbita pepo cv. Dixie) plants showed an overall net 
increase in VOCs, but no major qualitative difference in VOC profiles could be iden-
tified in infected plants (Mauck et  al. 2010). The altered VOC profile emitted by 
CMV-infected plants demonstrates that the plant is inducing a change in VOC profile 
in response to viral infection, a mechanism known as “supernormal stimulus.”

A variety of techniques (Fig. 3.2) have been used to identify the changes occur-
ring in host genetic expression due to virus infection. The most common ones are in 
situ hybridization for individual genes and global profiling of host transcripts using 
cDNA microarrays or oligonucleotides (Zhu et  al. 2001). The microarray-based 
studies have been done on model host systems, e.g., Nicotiana benthamiana and 
Arabidopsis thaliana. Nicotiana benthamiana experiments have utilized a heterolo-
gous array from potato (Solanum tuberosum, also a member of Solanaceae). 
Heterologous arrays are microarrays containing cDNA sequences or oligonucle-
otides from plants providing the RNA for transcription profiles. A large number of 
ESTs from six solanaceous species potato, tobacco, pepper, tomato, petunia, and N. 
benthamiana were analyzed, and it was found that 51–81% of ESTs had significant 
sequence similarity. Only 16–19% transcripts did not match among Solanaceae, 
rice, or Arabidopsis (Rensink et al. 2005).

Engineered viruses different from wild type in terms of virulence can also be 
used to study plant responses to viral strains and help to analyze the specific viral 
protein functions. Another strategy to discover common or specific responses of 
host to diverse viruses is by comparative analysis of expression data from viral 
infections of plants with different pathogens or stress.

To determine the control of host responses and to study the effects on viral pathoge-
nicity, the different plant mutants and genotypes are analyzed. Another approach is to 
reveal the expression of individual viral components under the control of promoters 
either inducible or constitutive for studying the gene expression in host cells or tissues.
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3.5  Transmission of Viruses

Agriculture is essential for continuous supply of food and other important products 
for human being. Therefore developing efficient strategies for protecting plants 
against pests and pathogens has been an important concern. Viruses are different 
from other plant pathogens because they require other organisms for their transmis-
sion. For instance, winged insects with sucking mouthparts help in transmission of 
most of the viruses from one place to another even at a distance (Vuorinen et al. 
2011). Other insects like chewing insects are also responsible for the transmission 
of plant diseases especially those caused by plant viruses. The major insect vectors 
are aphids, whiteflies, and leafhoppers (Table 3.2). The viral transmission is com-
pleted in four steps: First is the acquisition of viruses from an infected plant. Second 
is the retention of virus in the vector by binding of virion to receptor-like elements 
in the digestive tract or circulation from the gut to the salivary gland. In the next 
step, virions are delivered from the retention sites to new site, and finally virions are 
deposited in a susceptible cell of the host plant. The transmission mode could be of 
two types depending on the length of the period during which the acquired virus can 
be transmitted to an uninfected plant by the vector. For persistent transmission few 
hours are required for acquisition of virus, and a retention time, varying from few 
hours to days, is required before the insect vector becomes viruliferous. Sometimes 
an intermediate mode called semi-persistent transmission occurs for viruses which 
require intermediate time period between acquisition and retention.

The transmission can also be classified as non-circulative or circulative depend-
ing on the route followed by the virus in the insect vector. In non-circulative trans-
mission, the virus is retained in the anterior tract, i.e., the mouthparts or foregut of 
the digestive system. Viruses following this mode are generally nonpersistent or 

Fig. 3.2 Traditional and innovative methods of detection used for diagnosis of diseases in plants 
caused by viruses. Four disease stages are indicated along with their timing of use during plant 
disease progression
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semi-persistent viruses. The efficiency of virus transmission increases or decreases 
as in semi-persistent viruses (where the acquisition time is longer) and nonpersis-
tent viruses, respectively. The main difference is associated with the virus stability 
in the vector, so that virions get accumulated until the retention sites are saturated 
and the chance of later transmission increases. Aphids are unique type of insect vec-
tors which transmit mainly nonpersistent viruses where the virions may rapidly be 
lost if the feeding period is extended beyond the limit. It is, therefore, difficult to 
control the spread of such viruses by insecticide treatments because both acquisition 
and inoculation occur during feeding only. In circulative transmission, the acquired 
virus must pass across the gut to reach the hemolymph after feeding on the infected 
plant. Finally it reaches the salivary glands and inoculated through saliva. This pro-
cess might take few days due to latency period during which the virus crosses cel-
lular barriers within the insect.

An important molecular interface which determines the acquisition from infected 
host plants and transmission to new hosts is the protein–protein interaction between 
plant viruses and insect vectors. These interactions are highly specific and open 
avenues for the control of insect vectors and viral transmission. Highly potential 
OMICS technology can be used to identify and validate the virus-interacting pro-
teins in the vector and understand the innate immune responses to viral infection 
(Dietzgen et al. 2016).

3.6  Virus Accumulation and Movement in the Host

The virus accumulation in host plant requires replication and translation of viral 
gene sequences. The host further enhances their accumulation by providing factors 
for accumulation. The NAC (from the first word of these three genes: no apical 
meristem gene (NAM), Arabidopsis transcription activation factor gene (ATAF), 
cup-shaped cotyledon gene (CUC)) domain protein from tomato is found to interact 
with replication enhancer (REn) of geminivirus and hence participate in virus repli-
cation (Selth et  al. 2005). NAC proteins also interact with Rep A (another viral 
protein) inhibiting the specialization of viruses (Xie et al. 1999). Interaction of NAC 
protein with viral coat protein is necessary in Arabidopsis during a resistance 
response (Ren et al. 2000).

Table 3.2 Main groups of 
insect vectors of plant viruses

Type of insect Plant viruses
Aphids Potyvirus
Whiteflies Begomovirus
Leaf hoppers Curtovirus
Plant hoppers Oryzavirus
Thrips Tospovirus
Beetles Bromovirus
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Using yeast as an alternative host, screening for host factors affecting virus accu-
mulation has been done which shows that the host gene involved in viral accumula-
tion may vary from virus to virus (Panavas et al. 2005).

3.6.1  Viral Factors Involved in Plant Pathogenesis

The different virus factors, mainly proteins and nucleic acids, contributing to the 
pathogenesis of plant virus infections are discussed below:

 1. RNA replicase-related proteins/RNA-dependent RNA polymerase (RdRp):

Some enzymes like viral RNA-dependent RNA polymerase or RNA replicase can 
affect viral genome replication and therefore viral accumulation and thus contribute 
to pathogenesis in an indirect way. For example, serial passages of singly mutated 
RNA replicase sequence of plum pox virus (PPV) in an experimental host, Pisum 
sativum, causes a drastic enhancement of disease symptoms which is associated with 
a notable increase in viral accumulation (Wallis et al. 2007). Like most viral proteins, 
RNA replicases can also lead to HR by functioning as elicitors of R-gene-driven 
effector-triggered immunity (ETI). For example, the helicase domain of the TMV 
RNA replicase (an avirulent replicase) induces HR (Erickson et al. 1999).

 2. Coat proteins/capsid proteins (CPs):

Viral coat proteins or capsid proteins are the multifunctional proteins that, in 
addition to having a structural role (except some virus groups notably umbraviruses 
where the genomic RNA is not encapsidated by the coat protein), are involved in 
virus entry, disassembly, replication and translation of viral RNAs, movement or 
transmission of viruses, activation or control of antiviral resistance, symptom devel-
opment, and host defense responses (Ni and Cheng Kao 2013). There has been a 
great advancement in the understanding of contribution of CPs to plant–virus inter-
action (Peng and Kao 2013).

Pathogen-derived resistance (PDR) can be engineered through mechanisms 
underlying the interaction of CP with host genes. RNA silencing of CP gene or 
inhibition of CP activity can mediate such resistance (Hafrén et al. 2010). It is not 
only the coat protein sequence but other sequences like those of MP and viral repli-
case that can also be used to engineer PDR. Although a tiny proportion of the trans-
genic crops carries the disease resistance traits, these engineered crops are of great 
interest in developing countries. Plant viral CPs like RdRps can also act as elicitors 
of R-gene-mediated HR. For example, Tobacco mosaic tobamovirus CP can func-
tion as an elicitor of hypersensitive response (HR) genes (Taraporewala and Culver 
1997). Similarly the CPs of TMV and CMV act as avirulence factors that elicit 
resistance controlled by a dominant R-gene (Moffett 2009). Also a single amino 
acid substitution in the CP has been demonstrated to be responsible for conferring 
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the ability of TMV to elicit HR in Nicotiana sylvestris or to alter the symptom phe-
notype and host range in CMV-infected tobacco plants. Likewise antiviral defense 
generated upon viral infection can be enhanced through metabolic genes via CP 
production. For example, sulfur metabolism genes in the infected kenaf plants are 
upregulated by CP of Hibiscus chlorotic ringspot carmovirus (HCRSV).

Some kinds of CP interactions might target a redirection of host resources toward 
viral replication. And some CP can serve as an efficient suppressor of RNA silenc-
ing after binding to a host chaperone, thereby sequestering the silencing signal.

 3. Movement proteins (MPs):

The viral pathogenesis is strongly influenced by the translocation of viruses from 
cell to cell throughout the plant body. An early event in the infective process is the 
movement of viruses from one cell to another. Viruses must cross the cell wall bar-
rier to infect the adjacent cells and thus establish a systemic infection in plants. 
Derrick et al. (1992) described that TMV in Nicotiana tabacum and Tobacco rattle 
virus in Nicotiana clevelandii takes 4–5 h to move from one cell to another. Viruses 
first move to plasmodesmata (PD) from their replication sites on the periphery of 
cell and then pass through these channels entering the adjoining cell. This intercel-
lular movement of virus occurs mainly through plasmodesmata in mesophyll and 
epidermal cells. Plasmodesmata are specialized intercellular organelles establishing 
cytoplasmic and endomembrane continuity between adjacent cells after crossing 
the cell walls. Although PD regulate the intercellular movement of macromolecules 
or macromolecular complexes, such as viral particles and ribonucleoprotein (RNP) 
complexes, they allow small molecules to diffuse between cells. This movement is 
mediated by viral encoding factors named movement proteins (MPs) (Waigmann 
et  al. 2004). These facilitate the translocation of plant viruses among cells and 
through plant. During the first stage, these MPs bind to viral genome forming ribo-
nucleoprotein complexes or to tubular structures which hold viruses allowing them 
to cross plasmodesmata. These then transport the virus through plasmodesmata 
from the epidermis to mesophyll and then to vascular bundles. There is still a poor 
understanding on how MP opens PD and how viral RNPs or virions pass through 
MP-gated or MP-formed tubule at PD. PD have a very small aperture with the cyto-
plasmic sleeve not more than 10 nm in diameter. Factors restricting the PD aperture 
include callose and pectic polysaccharide. Callose is biosynthesized at the cell wall 
by callose synthases, while it is degraded by β-1,3-glucanases. A positive correla-
tion exists between β-1,3-glucanase expression and viral spread. And TMV has also 
been found to interact with an enzyme involved in de-esterification of pectic homo-
galacturonan, i.e., pectin methylesterase (PME) (Faulkner et al. 2008). MPs play a 
crucial role in host specificity for most of the plant viruses. Viral MPs have been 
shown to interact with products of R-genes to elicit HR response. During the hyper-
sensitivity reaction (HR), callose (β 1–3 glycan) gets deposited in the plasmodes-
mata blocking the channels and restricting the viral movement from one cell to 
another. The Potato virus X (PVX) produces a protein interacting with 
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β-1,3- glucanase (callose-degrading enzyme) facilitating the movement of PVX 
through the plasmodesmata (Fridborg et al. 2003). Constitutive or tissue-specific 
expression of viral MPs may trigger typical viral infection symptoms such as abnor-
mal sugar accumulation, diminished photosynthesis, chlorosis, and dwarfism. One 
of the most important strategies is blocking cell-to-cell or long-distance movement 
of the virus. It has been reported that a single-nucleotide substitution in MP gene 
which enhanced the viral movement efficiency of tymovirus led to greater viral 
accumulation and also increased severity of symptoms. Additionally, in TAV cucu-
movirus, the different levels of expression of MP can determine the difference in 
severity of symptoms between two virus strains (Moreno et al. 1997).

A coordinated action of host factors and virus-encoded movement proteins 
(MPs) is required for cell-to-cell movement of viruses through PD. More than ten 
host factors in addition to these cell wall enzymes have been found to be involved in 
intercellular movement of different viruses (Heinlein 2015).

Interaction of plant virus MPs has also been reported with the host protein pro-
moting viral movement. These proteins can be localized in the nucleus, microtu-
bules, and also plasma membrane which may be required for intra- or intercellular 
virus movement and affect the symptom development (Table 3.3).

Transgenic plants overexpressing these proteins have been used to understand 
the involvement of MPs in viral pathogenesis. These proteins interfere with the 
cytoplasmic communication channels as transgenically expressed MPs are located 
in the plasmodesmata, hence increasing the size exclusion limit of plasmodesmata 
further triggering alteration in metabolism and distribution of carbohydrates (Pallas 
et al. 2011).

Another such host apparatus is the cytoskeleton and its components, which fur-
ther facilitate viral transport through plasmodesmata. It may act together with the 
endomembrane system of the host cells. To deliver viral MPs, vRNPs, and virions 

Table 3.3 Plant viral movement proteins

Virus-interacting 
protein Host protein Role in viral movement References
Pvx-tgb2 Tip I Cell-to-cell movement Fridborg et al. 

(2003)
TMV-MP Calreticulin Regulate cell-to-cell movement Chen et al. (2005)

ANK Ueki et al. (2010)
PME Dorokhov et al. 

(1999)
PMTV-TGB-2 RME-8 

family
Intracellular and intercellular 
movement

Haupt et al. 
(2005)

GRV-MP Fibrillarin Vascular transport intracellular 
movement – nucleus

Kim et al. (2007a, 
b)Geminivirus – 

NSP
Protein 
kinase

CaMV-MP MPI-7 Susceptibility – cytoplasm Huang et al. 
(2001)
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to PD, viruses must hijack the endomembrane system, early secretory pathways, 
and/or the cytoskeleton network along with its motor proteins. The various viral 
MPs are transported via the ER to plasmodesmata, and actin/myosin filaments con-
trol the flow of proteins in ER membrane. In TMV, microfilaments assist in the 
cell- to-cell movement of virus, and microtubule-associated proteins degrade the 
viral movement proteins (Kragler et al. 2003). Calreticulin is a chaperone protein 
localized in the lumen of ER which helps in protein degradation via the proteasome. 
The overexpression of calreticulin in transgenic plants redirects Tobacco mosaic 
virus to microtubules from plasmodesmata, and cell-to-cell transport of virus is 
compromised (Chen et al. 2005).

Viral intercellular movement may be summarized into four major types on the 
basis of the characteristics of CP involvement and MP behavior:

 1. The first type is illustrated through tobamovirus, bromovirus, and cucumovirus. 
The movement of viruses is in the form of the viral RNA-MP complex (vRNP). 
In the case of bromovirus and cucumovirus, the viral movement requires CP but 
is independent of the virion. Single dedicated MP of TMV however increases the 
size exclusion limit of PD for CP-independent viral RNP movement between 
cells.

 2. Rod-shaped viruses such as hordeivirus-like viruses and potexviruses illustrate 
the second type. The three TGB (triple gene block) proteins encoded by these 
viruses plus CP coordinate the intercellular transport of vRNPs (for hordeivirus- 
like viruses) and virions or vRNPs (for potexviruses).

 3. The third type including comovirus and nepovirus transverses and modifies the 
PD and is in the form of a virion guided by the MP-assembled tubules.

 4. The last type illustrated by potyviruses assists the passage of virion by the for-
mation of cone-shaped and not tubular structures at the PD.

3.6.2  Viral Long-Distance Movement

The virus moves from the mesophyll via bundle sheath cells, phloem parenchyma, 
and companion cells into phloem sieve elements (SEs) for long-distance or phloem- 
dependent movement. Following the source-to-sink flow of photoassimilates, the 
virus is then passively transported and unloaded from SEs to sink tissues at distant 
sites. It then results in further infection. PME seems to affect long-distance move-
ment as well. In a PME-silenced tobacco line, there is a substantial delay in viral 
systemic transport. This happens because TMV movement out of the vascular sys-
tem is blocked because of the significant degree of pectin methylesterase (PME) 
suppression in the vascular tissues (Chen MH and Citovsky 2003). However, the 
exact roles and underlying mechanisms of the host factors in viral long-distance 
transport are still far from understanding.
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3.7  Responses of Plants to Viruses

Plant–virus interplay where the virus tries to take over plant resources for its multi-
plication and then counteracts the antiviral defenses raised by the plant often leads 
to manifestation of disease symptoms. The cross talk among different hormones 
governing the various pathways in antiviral defense is also disturbed through virus 
infection (Pallas and Garcίa 2011; Nagy and Pogany 2012). Thus the most common 
symptom of plant virus infections appears to the developmental abnormalities 
resulting from such disturbances. Different subcellular organelles, cells, and organs 
when adapting to the new requirements of virus replication and movement can 
interfere with normal plant homeostasis and therefore lead to disease symptoms. 
However, sometimes interactions among definite viral and host factors can lead to 
specific symptoms through viral infection as illustrated in the case of HR-related 
necrosis elicited by discrete viral elements or misregulation of auxin response factor 
8 caused by several viral silencing suppressors leading to developmental defects. 
Still the interactions between numerous viral and host factors conditioned by mul-
tiple environmental conditions can lead to much more complex manifestations of 
many plant virus infections. Unique experimental designs based on systems biology 
and the development of powerful technological tools in the coming years are con-
sidered to open new chapters in understanding the molecular basis of these plant 
virus pathogenicity relationships. On viral attack, plant responses can be broadly 
classified into two categories: (a) cellular stress and (b) developmental defects. The 
changes in plant gene expression profiles due to viral infection are very much like 
the defense and stress responses. There may be induction of heat shock proteins 
(HSPs) during stress-like responses and pathogenesis-related (PR) genes under 
defense-like responses.

3.7.1  Cellular Stress

PR genes are the defense-related genes like PR-1, β-1 glucanase (PR-2), chitinase 
(PR-3) PR-4, thaumatin-like protein (PR-5), superoxide dismutase (SOD), and glu-
tathione S-transferases (GT). Some other genes are also co-induced with the PR 
genes. For example, it has been observed that in Arabidopsis thaliana and Nicotiana 
benthamiana, few genes of WRKY family of transcription factors also get induced 
during viral infection.

Under stress conditions and also in normal growth and development, HSPs get 
induced. Their expressions also get induced by DNA and RNA viruses in the host 
plants. The first report of HSP70 induction in response to viral pathogen in pea 
embryos was demonstrated by in situ hybridization (Aranda et al. 1996). Further 
evidence was provided in Arabidopsis in response to different RNA viruses 
(Whitham et al. 2006) (Fig. 3.1).
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3.7.2  Development Defects

Some of the genes of the host plants found to express themselves on viral infection 
may have a connection with the developmental defects and symptoms of disease. 
Viruses interfere in the signaling pathways and hence affect plant growth and devel-
opment. The abnormal growth forms of virus-infected plants have led to the experi-
ments revealing effects of viruses on hormone levels in host plants. Depending on 
host–virus combination, auxin, cytokinin, gibberellin, ethylene, and abscisic acid 
levels get altered on viral attack. For TMV and RDV (Rice dwarf virus), a link 
between auxin–gibberellin levels has been well established (Jameson 2000). The 
interaction of helicase domain of TMV 126 and 183 kDa replicase protein with IAA 
transcription factor (IAA26) was established (Padmanabhan et al. 2005). Silencing 
of IAA 26 resulted in TMV-infected plant phenotypes directing the loss of function 
of IAA 26 by TMV replicase. The P2 protein of RDV also affects gibberellic acid 
signaling (Zhu et al. 2005).

The effects of viral RNA silencing suppressors (RSS) on host gene expression 
cannot be neglected as they promote viral infections by interfering with host defense 
mechanisms and also regulatory miRNAs and trans-acting small interfering RNAs 
ultimately leading to developmental defects in host plants (Dunoyer and Voinnet 
2005). To counter the defense system of plants, viruses have acquired a strategy by 
disruption of host antiviral silencing.

3.7.3  Abnormalities in Chloroplast

After studying viruses from around 12 families covering major genera and those 
responsible for devastating disease (having either sense ssRNA, antisense ssRNA, 
or ssDNA genomes), it has been confirmed that chloroplast abnormality is a com-
mon event across diverse plant–virus interactions. Chloroplast has been implicated 
as a common target of plant viruses for a long time. Typical photosynthesis-related 
symptoms, such as chlorosis and mosaic pattern, cause disruption in normal chloro-
plast function although the causes leading to development of viral symptoms are 
different (Rahoutei et al. 2000). For example, infection by CMV in Nicotiana taba-
cum cv. Xanthi associated with fewer grana and reduced chloroplasts led to severe 
chlorosis on systemic leaves (Roberts and Wood 1982). In accordance with the pre-
vailing studies, the two main causes of virus-induced chloroplast symptomatology 
include ultrastructural alteration of chloroplast and the reduced abundance of pro-
teins involved in photosynthesis. Typical chloroplast malformations include:

 1. Overall decrease in the number and clustering of chloroplasts
 2. Change in the appearance of chloroplast, such as swollen or globule or amoeboid- 

shaped chloroplast, chloroplast with membrane-bound extrusions, or chloroplast 
with a dynamic tubular extensions from chloroplast known as stromule

 3. Broken envelope and irregular out-membrane structures such as peripheral vesi-
cle, cytoplasmic invagination, and membrane proliferations
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 4. Any change in the content of the chloroplast such as large intermembranous sac, 
increase in the number and size of electron-dense granules/plastoglobules/bod-
ies, enlarged or numerous starch grains, and small vesicles or vacuoles in stroma

 5. Absence of stroma or grana stacks and distorted, loosened, or dilated thylakoid
 6. Completely destroyed chloroplasts and disorganized grana scattered in the cyto-

plasm (Zhao et al. 2016)

Recently carried out studies reveal that chloroplast ultrastructure and symptom 
development are affected by viral factors, especially CPs, as shown in the work of 
Neeleman et al. (1991).

On comparison with healthy plants, virus-infected plant cells were seen to con-
tain reduced amounts of chlorophyll–protein complex. No significant differences 
were observed in the photosystem I (PSI) reaction center upon TMV infection, but 
an inhibition of photosystem II (PS II) activity was observed by selectively decom-
posing the light-harvesting antenna complex of photosystem II. Likewise, among 
the stroma proteins, chlorotic tissues of Cucumber mosaic virus (CMV)-infected 
plants observed a loss in the activity of the small subunit of the enzyme ribulose- 
1,5-biphosphate-carboxylase-oxygenase (RuBisCO). A significant increase was 
measured in the enzyme activity of chlorophyllase and catalase vis-a-vis decrease in 
the chlorophyll content. This could be due to release of the enzyme chlorophyllase 
bound to the chloroplast inner membrane after the disorganization in the chloro-
plast. Rarely does virus replication occur on chloroplast, but still the products of 
viral infection like coat proteins are found to inhibit the photosynthetic activity. The 
interaction of CP with chloroplast might affect chloroplast function and stability, 
which gives rise to chlorosis. Similar to replicases and silencing suppressors, viral 
CPs have been recently shown to interfere with/modulate hormone signaling 
pathways.

Transcriptomic and proteomic analysis of expression of chloroplast proteins 
upon virus infection shall provide an insight into the molecular events during symp-
tom expression. For example, in response to virus infection in susceptible plants, a 
majority of significantly changed proteins are identified to be located in chloroplasts 
or associated with chloroplast membranes. Most of them correlate with severity of 
chlorosis and are seen to be downregulated (Dardick 2007).

3.8  Viral Infection and Physiological Functioning of Host 
Plants

A successful infection by plant virus results from molecular network of interactions 
during viral infection process. Therefore understanding this complex molecular 
interplay between the host plant and the invading virus may assist in the develop-
ment of novel antiviral strategies. Theoretically, viral infection in plants can be 
divided into several major steps including viral particle disassembly, viral genome 
translation (in case of + ssRNA viruses), cellular membrane modifications coupled 
with formation of VRC (viral replication complex), viral genome encapsidation, 

3 Plant–Virus Interactions



62

cell-to-cell movement, and long-distance transport. Viruses are thus evolutionarily 
empowered with an ability to take over the host cellular pathways and manipulate 
the cellular components. Additionally, diverse host-encoded proteins or host factors 
are also present at each of these steps (Wang and Krishnaswamy 2012).

3.8.1  Virion Disassembly and Viral Genome Translation

3.8.1.1  Host Factors in Virion Decoating
Positive-sense RNA viruses do not encapsidate the virally encoded RNA-dependent 
RNA polymerase (RdRp; an absolute requirement for viral genome replication) in their 
virions. Physical barrier is a major bottleneck that plant viruses have to overcome to 
spread from cell to cell for the subsequent systemic invasion of their host. Thus, plant 
wounding is an obligatory condition for virus entry. Mechanical damage to the CW 
provides the virus with an opportunity to enter the cell. As soon as the virus gains entry 
into the plant cell, the first step toward a successful infection is the removal of viral 
shell or capsid (made of capsid protein subunits) so that the viral genome is exposed to 
cellular translation machinery to begin viral genome translation. Although viral parti-
cles are highly stable and can survive for extended periods under the harsh extracellular 
environment, there remains a poor understanding on how the stable virions disassem-
ble in the environmentally friendly symplast of their host. Decoating is a passive pro-
cess triggered by the change of pH and positively charged cation concentration in the 
cell as suggested in some of the early studies on TMV. This thus leads to removal of 
few CP subunits from 5′ end of the encapsidated RNA (Culver 2002) and thus leading 
to initiation of virion disassembly. Thus, an important, if not universal, strategy for 
plant positive-sense RNA viruses is to disassemble the cotranslational mechanism. In 
order to prevent the activation of host antiviral mechanisms (like RNA silencing trig-
gered by ds RNA intermediates), to provide a scaffold for tethering the VRC, and to 
restrict the process of viral replication to a specific safe cytoplasmic site, viral replica-
tion is associated with the virus-induced intracellular membranous structures. The ori-
gins of such membranous structures are diverse and dependent on the type of virus 
(Laliberte and Sanfacon 2010). Example, tobamoviruses and Tomato mosaic virus 
(ToMV) recruit and modify the ER membrane for their genome replication in plants.

3.8.2  Viral Replication Complex Composition

All VRC components (in addition to remodeling of cellular membranes by viral 
proteins and co-opted host factors) must be present together at the site of replication 
to form a functional unit for catalysis of viral replication. The following constitutes 
the VRC present in the modified cellular membranes:

• Viral replicase proteins, such as RdRp and viral helicase
• A viral RNA template
• Diverse host proteins like heat shock proteins (HSPs) and RNA-binding proteins 

(RBPs) (Verchot 2012)
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3.8.2.1  Host Factors in Viral Genome Translation
Viruses have evolved diverse strategies to recruit the host translation apparatus for 
quick and efficient translation of the viral genome because they lack functional 
ribosomes and their genomes do not encode other translation-required compo-
nents. Translation is known to be a tightly regulated process including several 
phases, i.e., initiation, elongation, termination, and ribosome recycling. Wang and 
Krishnaswamy (2012) have discussed the possible mechanistic roles of eIF4E and 
its isoforms (best characterized host factors for plant potyviruses) in potyviral 
infection. Because the viral genome translation and replication of positive-sense 
RNA viruses are intimately linked by sharing the same site and the same template 
(often considered to be a coupled process), it is highly possible that these transla-
tion factors may contribute to viral genome multiplication (Kawamura-Nagaya 
et al. 2014).

3.8.2.2  Regulation of Viral Replication by Viral Protein Modifications
The functional diversity of the plants can be increased by posttranslational modi-
fications (PTMs) of viral proteins in the infected cells. Various PTMs have been 
documented till date to affect viral replication in plants. Examples include phos-
phorylation (the most common and reversible protein phosphorylation which 
seems to negatively regulate viral replication), ubiquitination, SUMOylation, 
and other PTMS (like methylation which modifies eEF1A and thus affects tom-
busvirus replication) which have also been shown to affect viral replication (Li 
et al. 2014).

Viruses not only infect and damage the crops, but weed plants are also seriously 
infected. Keeping in view the considerable losses and destruction of crop plants, 
earlier investigations were conducted only on crop plants. But later it was observed 
that weeds also play an important role in infecting and spreading viral diseases and 
not just compete with crop plants for nutritional benefits. Thus, biological decline of 
weeds is considered to be an important strategy for promoting crop production, and 
the level of weeds is therefore maintained under economic threshold to sustain agri-
culture. Viruses can directly contribute to weed control by reducing their competitive 
ability. The investigations done earlier were focusing more on physiology and bio-
chemistry of virus-infected crops although viruses can damage both crops & weeds 
and weed–virus interaction was almost not focused upon. The various physiological 
effects of viruses to crop plants and weeds reduce their growth and development. 
There are certain reports such as in Datura stramonium, where a reduction in photo-
synthetic pigment content (Chl-b) was detected in the leaves infected with CMV 
(Cucumber mosaic virus) and HeMV (Henbane mosaic virus). Depending upon the 
host–virus relationships, there was 30–80% reduction in shoot dry weight of test 
plants. Virus infections do have an important effect on germination characteristics of 
weeds. Viral infection influenced seed dormancy rather than viability of seeds in 
Solanum nigrum plants infected with Obpv (Obuda pepper virus) and PepMV 
(Pepino mosaic virus), whereas it was reverse in the case of chenopodium plants 
infected with SoMV. Considerable effect of viral infection on the nutrient uptake of 
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plants was observed in S. nigrum plants infected with TMV. Seed production is also 
reduced by TMV infection in S. nigrum plants (Takacs et al. 2014). Weeds can even 
function as sources of primary infection in the spreading of plant diseases and over-
wintering of plant viruses apart from its role as direct competitors for nutrients, light, 
and water. Weeds can also function as host plants of virus vectors. Therefore, in 
sustainable agricultural practice, the level of weeds is kept under economic thresh-
old, and considerable efforts are taken to maintain biological diversity.

3.8.2.3  Interference of Viral and Plant Factors with Hormone 
Regulation

Hormones are those signal molecules which move around the plant to stimulate 
responses to different environmental stresses. Hormones like salicylic acid (SA), 
jasmonic acid (JA), and ethylene (Et) have long been known for their roles in tuning 
plant responses to biotic stresses. However, the other hormones known for their 
roles in plant growth and development like auxins (Auxs), brassinosteroids (BRs), 
cytokinins (CKs), and abscisic acid (ABA) are also known to be involved in plant–
pathogen interactions (Denance et  al. 2013). Certain hormones can prevail over 
others under specific circumstances by showing antagonistic or synergistic interre-
lations. For example, SA, JA, and Et, regulating defense pathways, exhibit antago-
nistic interactions.

On recognition of viral effectors by R-gene products, SA biosynthesis and signal-
ing are activated which conditions incompatible interaction. It activates SAR in distal 
tissues. To limit viral propagation at the infection site, activation of the incompatible 
reaction occurs resulting in several responses like callose deposition, tissue disorga-
nization, nuclear and nucleolar degradation, alterations in the shape and size of chlo-
roplasts, accumulation of reactive oxygen species (ROS) and pathogenesis- related 
(PR) proteins, induction of the hypersensitive response (HR), and programmed cell 
death (PCD). Several examples of incompatible plant–virus interactions exist. For 
example, a parallel and significant increase in the SA and expression of PR genes is 
observed in the inoculated and systemic leaves of resistant tobacco plants after infec-
tion with Tobacco mosaic virus (TMV) (Baebler et al. 2014).

ABA appears to have multiple roles against the pathogens depending on the 
stage of infection in addition to its antagonistic roles in defense hormone pathways 
such as SA and JA/Et. In cases where pathogen overcomes the first line of defense, 
ABA helps in regulating plant defense at the early stages of infection by the media-
tion of stomatal closure against invaders or induction of callose deposition. But, if 
activated at later stages, ABA can suppress ROS induction and SA or JA signaling 
transduction, thereby negating defenses controlled by these two pathways (Ton 
et  al. 2009). Although the involvement of ABA in biotic stress has been studied 
thoroughly, the roles of ABA in virus replication and movement are not well char-
acterized. The involvement of ABA in virus interaction was first studied in the con-
text of the effect of TMV on ABA accumulation in N. tabacum and tomato, which 
revealed that ABA increases callose deposition and limits virus movement (Fraser 
and Whenham 1989). The defensive role of ABA against viruses is mediated through 
inhibition of the basic β-1,3-glucanase which is responsible for the degradation of 
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β-1,3-glucan (callose). Subsequently β-1,3-glucan (callose) is deposited on plasmo-
desmata which strengthens them against virus movement (Mauch-Mani and Mauch 
2005). ABA also affects plant defenses at the level of the RNA silencing machinery, 
which is considered to be a broader defense system against viruses. For example, 
ABA seems to partially control ARGONAUTE1 (AGO1) levels and thus have direct 
and indirect links with this system.

3.8.2.4  Interference of Viral and Plant Factors with Cell Cycle 
and Gene Expression

Few viruses infect the host cells, which are dividing actively. As most of the plant 
cells do not divide actively, viruses develop mechanisms involved in alteration of 
host cell cycle. For example, Rep protein of geminiviruses interacts with a 
retinoblastoma- related protein family pRBR, involved in negative regulation of cell 
cycle. This interaction inhibits the activity of pRBR protein, cell enters S-phase, and 
host DNA replication machinery is produced which is required to reproduce the 
virus (Kong et al. 2000).

Plant viruses can also reprogram host gene expression just like the animal 
viruses. The evidence came from the reports of Havelda et al. (2008), where a con-
nection between reprogramming of host gene expression and pathogenicity of 
viruses was provided. A correlation between the interruption of cellular gene expres-
sion (switch off mechanism) and viral symptom development was provided.

3.8.2.5  Effect of 5′ and 3′ NCRs (Noncoding Regions) on Viral 
Pathogen

The viral translation and replication process are influenced by NCR sequences (5′ 
NCR and 3′ NCR) of viral RNA.  There was reduction in viral RNA replication 
along with effects on symptom development where 5′ and 3′ NCRs were altered. A 
correlation was observed between the viral movement and alteration in 5′ NCR 
conditioning the viral pathogenicity (Petty et al. 1990). When a single nucleotide 
from ORF near the 5′ end of RNA in hordeivirus barley stripe mosaic virus was 
changed, there was prevention of viral movement encoded by immediately adjacent 
gene via negative regulation of synthesis of viral replicase.

The presence of 4 repetitions of 14 nucleotide sequence in 3′ NCR of TVMV 
(polyvirus Tobacco vein mottling virus) reduces the gravity of symptoms of disease 
without affecting viral accumulation.

3.9  Defense Responses in Plants and Viruses

Although viruses are relatively simple genetic entities, resistance molecular mecha-
nisms and viral diseases susceptibility are still not fully comprehended and under-
stood. Several mechanisms exist in plants for disease resistance against virus 
infections, but it is very difficult to explain them for various pathosystems 

3 Plant–Virus Interactions



66

separately (Brown 2015). An understanding of plant–virus interactions and molecu-
lar mechanisms of these interactions has been achieved through the unveiling of 
several model bacteria–plant systems. Gene theory proposed in the early 1970s has 
served as a model for many years, explaining how disease resistance is turned on 
against pathogens (Keen 1990). According to this theory, a single resistance gene 
(R-gene) encoded by the host recognizes the presence of avirulence (Avr) proteins 
and triggers a hypersensitive response of resistance (HR) leading toward rapid cell 
death. The most general R-gene types can be classified either as genes encoding 
protein nucleotide-binding leucine-rich repeat (NB-LRR) or genes encoding recep-
tor-like kinase/receptor-like proteins (Rathjen and Moffett 2003). About a decade 
later, another model was proposed known as zigzag model (Jones and Dangl 2006). 
There are two distinct defense responses for the plant defense system in the zigzag 
model. The primary defense level is called PAMP/MAMP-triggered immunity 
(PTI), and the secondary defense level is called effector-triggered immunity (ETI). 
A basic defense mechanism presented by PTI is preventing invasion of the pathogen 
through cell wall thickening in response to specific structures or pathogen-associ-
ated proteins so-called pathogen-associated molecular patterns (PAMPs) or 
microbe- associated molecular patterns (MAMPs). Plants show susceptibility only 
when a pathogen successfully establishes both PTI response suppression and its 
pathogenic effector’s facilitation. ETI, the second defense response level, is trig-
gered when the products of R-gene directly or indirectly sense the presence of spe-
cific effectors called as Avr factors. Consequently, an effective ETI will keep the 
plants resistant; however, an insufficient ETI will lead to the establishment of dis-
ease, i.e., the susceptibility of the plant. Models of general resistance of most patho-
gens don’t fit well with viral resistance because of intracellular parasitic nature of 
virus. For example, receptors of pattern recognition which serve as a component of 
major defense by triggering the first layer of resistance when a receptor of plasma 
membrane perceives a fungal or bacterial MAMP or PAMP (Tena et al. 2011) can-
not play a role in plant viruses fighting because viruses do not express extracellular 
PAMPs. Pathogens, however, have evolved counter measures, such as delivering 
effector proteins into the plant cell to suppress host PTI. The defense and counter-
defense between host and pathogen never end. Plants, in turn, have acquired resis-
tance (R) proteins to recognize these pathogen effectors and trigger the ETI, a more 
robust and specific response. Plant viruses are, thus, both trigger and target of RNA 
silencing. This reinforces the concept that RNA silencing evolved as an antiviral 
defense mechanism and highlights the arms race between plants and plant viruses 
(Chen 2010). The major strategies developed by plants to counteract virus infec-
tions are:

Resistance (R) gene mediated
RNA silencing-based defense
Recessive gene-mediated defense
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3.9.1  Resistance (R) Gene-Mediated Response

More often it has been observed that viral disease symptoms are caused by toxic 
effect of some viral components. R-gene-mediated resistance which is the most 
intensively explored form of resistance toward the diverse bacteria, fungi, and 
viruses is frequently HR responsible and is an effective way to gain resistance 
against plant viruses. HR is the most common defense response to the viruses. 
R-genes (receptors) are expressed in the plant which can bind to the Avr gene prod-
ucts (elicitor protein) of the pathogen. HR response is an outcome of a cascade of 
transduction signals developed by receptor–ligand complex (Fig.  3.3). As the 
R-genes restrict the pathogen to the inoculated area, its spread to the entire plant is 
obstructed. The first viral R-gene to be cloned and characterized was from Nicotiana 
and Tobacco mosaic virus (TMV) is the first virus discovered and isolated from 
Nicotiana glutinosa, and its counterpart R-gene served as a model for studying 
HR-based resistance, systemic acquired resistance (SAR), and gene-for-gene theory 
(Holmes 1929). R-gene product RX1 interacts with the capsid protein of Potato 
virus X to cause programmed cell death at the infection site. At the same time, 
R-gene can block virus replication before the generation of sufficient amount of 
capsid protein to cause necrosis. In some instances, it doesn’t impede the viral 
spread throughout the plant, but systemic necrotic spots are generated. HR may be 
induced by any viral gene other than CP also which may or may not be capable of 

Fig. 3.3 A simplified 
representation of R-gene- 
mediated resistance in 
plants. R-genes (receptors) 
are expressed in plants 
which can bind to Avr gene 
products (elicitor protein) 
of the pathogen resulting in 
a cascade of transduction 
signals developed by 
receptor–ligand complex
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impeding viral propagation. The cytoplasmic inclusion RNA helicase from Soybean 
mosaic virus (SMV) and RSV3 gene from Glycine max (Zhang et al. 2009) and the 
interaction between p50 helicase domain of TMV replicase and N gene from 
Nicotiana glutinosa (Padgett et al. 1997) are the examples of HR inducers being 
capable of hindering the virus propagation.

There are reports of the other type also where viral gene product inducing HR 
may not be capable of restricting viral propagation. Systemic necrosis of Arabidopsis 
thaliana is caused by TuMV (Turnip mosaic virus), which is the result of gene inter-
action between P3 encoding region of virus and TuNI resistance gene.

3.9.2  Role of Volatile Organic Compounds in Plant Defense

The plant defense system includes the organization of communication between 
plants and between different parts of the same plant. VOCs emitted by a damaged 
plant act on the plant’s own leaves and on the organs of neighboring plants, modify-
ing intercellular communication. In the absence of physical contact, they use vola-
tile organic compounds (VOCs) for communication. Theoretically, three responses 
are possible in a neighboring plant upon the release of VOCs as a signal of damage. 
First situation could be when there is no response by the neighboring plant. Secondly, 
plant could respond by creating conditions that promote plant–virus interaction 
(increasing sensitivity of plant, its sensitization). Finally, the plant can create condi-
tions that prevent virus infection by increasing its antiviral resistance. Thus, we 
cannot define a negative or a neutral influence of VOCs in plant–virus relationships. 
Plants release terpenes, fatty acid derivatives, benzenoids, phenylpropanoids, and 
amino acid-derived metabolites. Many of these products are made more lipophilic 
before their release into the air by the removal or masking of hydrophilic functional 
groups through reduction, methylation, or acylation reactions (Pichersky et  al. 
2006). VOC-mediated signals are transmitted to neighboring plants promoting the 
survival of entire community. Such VOC-mediated signals protect plants not only 
against insects, bacteria, fungi, and nematodes but also viral pathogens.

We currently have a fairly complete understanding of the processes and meta-
bolic pathways involved in the production of many VOCs, but we have an extremely 
limited understanding of how VOCs affect intercellular traffic and thus what impact 
VOCs have on the plant virus–host interaction. This modification of intercellular 
transport has a significant effect on pathogenic infections. The VOC-mediated pro-
cess of preparing plants for a putative attack can be referred to as “priming” (i.e., the 
initiation of reactions before the impact of the pathogen). In general, the process of 
priming is related to plant immunity, whereby plants trigger their defenses in 
response to a signal or previous challenge so that they can react with increased 
severity (Holopainen and Blande 2012). However, when we consider the role of 
priming in the relationship of the virus and the plant host, the picture is 
ambiguous.

Because the life cycle of viruses include the intercellular transport, cell-to-cell 
movement of viral genome, and also long-distance spread throughout the plant, 
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therefore, unlike bacteria, fungi, oomycetes, and nematodes, viruses depend 
more on the state of intercellular transport, and their life cycle is completed in the 
symplast (Xu and Jackson 2010).

Volatile communication plays an important role in mediating the interactions 
between plants, aphids, and viruses in the environment. Thus, VOCs can also influ-
ence the virus–host–vector combination apart from regulating the life cycle of 
viruses. Because the plant cell is bounded by a rigid cell wall (preventing direct 
contact between adjacent cells and virus particles), there is no evidence of the par-
ticipation of constitutively emitted VOCs in the innate immunity of plants to viruses.

Transgenic plants with increased VOC emission may be used as disinfectants to 
trigger and enhance a protective response against pathogens and plant-eating insects 
(Holopainen and Blande 2012).

3.9.3  RNA Silencing-Based Defense

In 1990, a defense mechanism was described where silencing of viral RNA was 
done as viruses are capable of overcoming complex defense barriers developed by 
host plants. This genetic surveillance system seems to be conserved in most eukary-
otic organisms ranging from fission yeast to human beings. It is also known as RNA 
interference (RNAi) in animals and posttranscriptional gene silencing (PTGS) in 
plants (Carrington 2000). Intracellular presence of dsRNA triggers this system 
which ultimately leads to downregulation of the expression of genes that share sub-
stantial sequence homologies with this dsRNA trigger.

The silencing-induced dsRNAs are perceived by the RNA silencing machinery 
and then acted upon by a dsRNA-specific nuclease designated Dicer or Dicer-like 
(DCL) nuclease in plants (Fig.  3.4). It results into the formation of short RNA 
duplexes of 21–25 nucleotides known as small interfering RNAs or siRNAs 
(Hamilton and Baulcombe 1999). They function as key specific determinants of 
RNA silencing. Another nuclease, referred to as argonaute (AGO), recruits one 
strand of the siRNA duplex and guides it to ssRNAs containing complementary 
sequences to the siRNAs. siRNAs also help in amplifying the silencing process with 
the help of RNA-dependent RNA polymerases (RDRps). siRNA-complementary 
ssRNAs act as templates to synthesize more of dsRNAs, which are again processed 
by DCLs, and thus leading to an amplification in silencing process. Additionally a 
family of dsRNA-binding proteins (DRBs) having abundant differences in their 
structures and functions have been reported as partners of DCLs at various steps of 
RNA silencing cascade. As the function of RNA silencing is defense of host cells 
against virus invasion, few DRBs play an important role in antiviral defense not 
only in animals but also in plants. DRB4 has been involved in defense against a large 
number of viruses in Arabidopsis (Qu et al. 2008). Thus four different families of 
proteins primarily constitute the plant RNA silencing machinery: DCLs, DRBs, 
AGOs, and RDRps.

The best understood RNA silencing pathway in plants is probably the microRNA 
(miRNA) pathway. In plants, an MIR gene is first transcribed to primary miRNAs 
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(pri-miRNA) by DNA-dependent RNA polymerase II; pri-miRNAs form partially 
double-stranded hairpins through extensive intramolecular base pairs. These pri-
miRNAs are processed by RNase III-like Dicer-like I endonuclease (DCL1) to gen-
erate miRNA precursors (pre-miRNAs). These are then sequentially processed by 
DCL1 to produce miRNA/miRNA duplex. The duplex moves to the cytoplasm, and 
mature miRNA (20–22 nucleotides) is selectively introduced into RISCs associated 
with AGO1. miRNA-programmed RISCs are directed to mRNAs with complemen-
tary sequences to mediate cleavage as well as translational repression and thus 
inhibit gene expression. RNA silencing serves as a major component in the antiviral 
defense mechanism; however, the strategy of R-gene-mediated resistance is effec-
tive against viruses as well as other phytopathogens (Nakahara and Masuta 2014).

Fig. 3.4 An overview of RNA silencing cascade in plants. Both long dsRNA and hairpin RNA 
with a significant length of double-stranded region (hpRNA) can be processed by DCL/DRB com-
plex into siRNA duplexes. This in turn mediates degradation of ssRNAs with the help of AGO and 
RISC complex. Additionally, siRNA could also serve as primers to prime the synthesis of new 
dsRNAs
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3.9.4  Recessive Gene-Mediated Defense

Viruses being intracellular parasites are exclusively dependent on host mechanisms 
for their life cycle. After entering a plant cell, viral genome is released, and early 
viral proteins are translated. The virus also takes over some of the host functions. 
Because of limited number of genes coded by viral genome, a number of host fac-
tors are required to continue the viral cycle. Any alteration in the host factor or its 
absence can be an efficient strategy for plant defense and can be considered as a 
passive form of resistance. Such resistance mechanism has been frequently shown 
to be recessively inherited. More than half of plant virus resistances are recessively 
inherited, and many are still to be characterized. In the case of recessive inheritance 
resistance, the majority of genes have been identified in plant–virus pathosystems, 
and several recessive resistance genes have been characterized in bacterial and fun-
gal pathogens research including xa5 (a Xanthomonas-resistant gene in rice) and 
mlo (resistance gene for powdery mildew in barley). Much of the identified R-genes 
confer resistance to various potyviruses. Recessive r-genes conferring resistance of 
potyvirus have been identified and deployed for decades in various crops. For exam-
ple, an essential host factor required for virus infection is translation factor of 
eukaryotes 4E (eIF4E) which plays a major role in host translation initiation by 
recruiting the ribosomal complex. Thus, natural variations in eIF4E provide an 
effective resistance against potyvirus infection in multiple crop species by prevent-
ing sequestration of virus. Thus, alteration in translation initiation factors (host fac-
tors) is a common strategy for developing viral resistance in plants (e.g., sbm1 in 
pea seed-borne mosaic virus of Pisum sativum and pot1 in PVY of Solanum lycop-
ersicum). Another example of recessive resistance in tomato is the recently charac-
terized ty5 which encodes messenger RNA surveillance factor pelo and confers 
resistance in Tomato yellow leaf curl virus (TYLCV). Pelo leads to impaired func-
tionalities in protein synthesis and ribosome recycling phases which triggers viral 
infection suppression in resistant ty5 genotypes.

3.10  Virus Counter Defense Mechanism

Virus pathogenesis not only induces a resistance mechanism in the host but also 
suppresses it. Almost all plant viruses have developed a viral-encoded silencing 
suppressor-mediated counterdefense mechanism inhibiting RNA silencing at differ-
ent steps. HC-Pro protein of potyviruses was the first identified silencing suppressor 
interfering with RNA silencing mechanism. The inactive forms of miRNAs 
(microRNAs) get accumulated on ectopic expression of HC-Pro protein which have 
negative regulatory function. HC-Pro also performs long-distance movement of 
viruses and also enhances pathogenicity of viruses (Saenz et al. 2002). To counter-
act the antiviral RNA silencing, most plant viruses have evolved silencing suppres-
sor proteins that block one or more steps in the RNA silencing pathway.
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3.11  Engineering Crops for Resistance Against Viruses

Geminiviruses are spread worldwide due to climate change, increasing insect vector 
population changes in crop cultivation, and changes in agricultural practices caus-
ing significant crop loss globally. Many of these crops are staple foods in tropical 
and subtropical regions; therefore developing resistance against geminiviruses is 
important socially and economically. The strategies used against geminiviruses 
include eradicating the vectors by using insecticides, but most of the times, the virus 
has already been transmitted to the plant even before the vector is killed. Also insec-
ticides are extremely toxic and have adverse effects on the environment. Therefore, 
environment-friendly agricultural practices are to be raised. These aspects necessi-
tate the development of natural resistance through genetically engineered crops pro-
viding more durable resistance to geminiviruses. The objective is to develop 
varieties by introducing selected nucleic acid sequences into plants either from the 
pathogen itself (pathogen-derived resistance, PDR) or not from the pathogen (non- 
pathogen- derived resistance) (Khan et al. 2014). Transgenic papaya cultivars were 
developed in 1998 against Papaya ring spot virus (PRSV) which is an RNA virus 
saving papaya industry from severe destruction in Hawaii. After herbicide- and 
insect-resistant crops, the third important transgenic crop having resistance against 
a virus is the RNA resistance papaya which is grown commercially. Currently, 
transgenic resistance is the most important research area to provide protection to 
plants against a large number of viruses.

3.12  Future Prospects

Viruses are obligate parasites infecting only living cells. The use of resistant culti-
vars is an effective strategy for reducing crop loss due to viral infection. 
Counter defense mechanism by virus encoding silencing suppressors gives rise to a 
battle between host and virus; ultimately variable symptoms are produced due to 
evolution of viral strains. The global transcriptomic and proteomic analyses have 
helped us to understand the plant–virus interaction at molecular level and also to 
acquire a broad vision of viral pathogens. Identification of host factors has long 
been one of the few major goals of virology research. The driving force comes from 
the obvious practical applications for the development of novel antiviral strategies 
and for beneficial biotechnological uses of viruses. Host factors may be targeted for 
the development of inheritable recessive genetic resistance in plants through 
advanced biotechnology, i.e., mutation, silencing, or downregulation of the host fac-
tor gene(s) (Wang and Krishnaswamy 2012).The challenge is to learn the influence 
of environmental factors, plant phenology, mode of viral entry into host, evolution-
ary adaptations of host and virus, and development of pathological process in the 
host for producing virus-resistant crops in the forthcoming years.
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Abstract
In plants, innate immunity, the first line of microbial recognition leading to active 
defense responses, relies on the perception of pathogen-associated molecular pat-
terns (PAMPs) by pattern recognition receptors (PRRs). Pattern recognition 
receptors (PRRs) enable plants to sense non-self molecules exhibited by microbes 
and raise proper defense responses or establish symbiosis. This recognition leads 
to PAMP-triggered immunity (PTI). Despite the numerous PAMPs recognized by 
plants, only a handful of PRRs are characterized. Most of them correspond to the 
transmembrane proteins with a ligand-binding ectodomain. PRRs interact with 
additional transmembrane proteins that act as signaling adapters or amplifiers to 
achieve full functionality. The crucial role of PRRs in antimicrobial immunity is 
demonstrated by the direct targeting of PRRs and their associated proteins by 
pathogenic virulence effectors. In recent years the importance of PRR subcellular 
trafficking to plant immunity has become apparent. PRRs traffic through the 
endoplasmic reticulum (ER) and the Golgi apparatus to the plasma membrane, 
where they recognize their cognate ligands. At the plasma membrane, PRRs can 
be recycled or internalized via endocytic pathways. By using genetic and bio-
chemical tools in combination with bio-imaging, the trafficking pathways and 
their role in PRR perception of microbial molecules are now being revealed.
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4.1  Introduction

Plants are sessile organisms and are in continuous exposure to various environmen-
tal signals. The perception of environmental signals and the ability to respond 
accordingly are essential for plants to survive. To defend themselves against a pleth-
ora of pathogenic microbes or pests, plants relies only on innate immunity as they 
lack specialized immune cells. The plant innate immunity has a two-tier perception 
system (Dodds and Rathjen 2010). The first layer of defense is mediated by surface- 
localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity 
(PTI). PTI relies on the perception of the specific molecular patterns, which includes 
microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) or self mol-
ecules (damage-associated molecular pattern  – DAMPs), that are released upon 
pathogen-induced cell damage (Boller and Felix 2009) (Table 4.1). MAMPs/PAMPs 
are conserved among pathogen and nonpathogenic bacteria; hence they are essential 
structures. MAMPs/PAMPs are recognized in plants by pattern recognition recep-
tors (PRRs). These receptors are localized on the surface of plant cells, and their 
induction provides the first line of defense. PRRs are membrane localized and 
broadly classified as receptor-like kinase (RLK) or receptor-like protein (RLP). 
RLK and RLP have multidomain architecture, including extracellular ectodomain, 
transmembrane domain, and cytoplasmic domain. The major difference between 
RLK and RLP lies in the cytoplasmic domain which is essential for downstream 
signaling. As kinase is the key function of RLKs, therefore they have a long cyto-
plasmic domain, responsible for signaling. However, on the other hand, RLPs have 
a small cytoplasmic domain, and hence they depend upon other cytoplasmic pro-
teins for downstream signaling. To cross the first line of defense, microbes like 
bacteria have developed a mechanism by which they directly inject effector proteins 
into the host cells. Type three secretion system (TTSS) in bacteria is the best studied 
example of this type. To overcome such conditions, plants have developed a second 
line of defense, which recognizes the effector proteins directly or indirectly through 
plant-resistant (R) gene product called effector-triggered immunity (ETI) (Jones 
and Dangl 2006). Most of the R proteins are intracellular immune receptor proteins 
and interact with effector proteins indirectly.

PTI’s early cellular response includes the rapid generation of reactive oxygen 
species (ROS) and nitrogen oxide (NO), activation of mitogen-activated kinases, 
expression of immune-related genes, alteration in cell wall architecture and synthe-
sis of pathogenesis-related (PR) protein and antimicrobial compounds. ROS and 
NO have antimicrobial effect, whereas NO is responsible for the cross-linking of the 
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Table 4.1 Pathogen-associated molecular patterns (PAMPs), damage-associated molecular pat-
terns (DAMPs), and nematode-associated molecular patterns (NAMPs)

Name
Corresponding plant 
receptor (PRR) References

PAMPs
Beta-glycan (GE) GEBP (putative 

receptor soybean)
Umemoto et al. (1997)

Flagellin FLS2 (Arabidopsis) Felix et al. (1999) and Gómez-gómez 
et al. (2001)

Lipopolysaccharide (LPS) Not identified Newman et al. (1995)
Chitin CeBip and CERK1 

(rice): AtCERK1 
(Arabidopsis)

Kaku et al. (2006), Miya et al. (2007), 
and Shimizu et al. (2010)

Xylanase (ElX) ElX (tomato) Ron and Avni (2004) and Bailey et al. 
(1990)

Elongation factor TU 
(EF-Tu, elf18/elf26)

EFR (Arabidopsis) Kunze et al. (2004)

Pep-13 (an oligopeptide of 
13 amino acids from P. 
megasperma)

Not identified Nurnberger et al. (1994)

Cellulose-binding elicitor 
lectin (CBEL) from 
Phytophthora

Not identified Mateos et al. (1997), Sejalon-Delmas 
et al. (1997), and Gaulin et al. (2006)

Peptidoglycan (PGN) Lym1 and Lym3 
(Arabidopsis)

Gust et al. (2007), Erbs et al. (2008), 
and Willmann et al. (2011)

Bacterial cold shock 
proteins (RNP1 motif)

Not identified Felix and Boller (2003)

Bacterial superoxide 
dismutase (Sod)

Not identified Watt et al. (2006)

Activator of XA21 (Ax21) XA21 and XA21D 
(Oryza sativa)

Song et al. (1995), Wang et al. (1998), 
and Gust et al. (2007)

Avirulence on Ve1 tomato 
(Ave 1)

Ve1 putative tomato 
receptor (Solanum 
lycopersicum)

de Jonge et al. (2012), Kawchuk et al. 
(2001), and Thomma et al. (2011)

DAMPs
Systemin Not identified Narvaez-Vasquez and Ryan (2004)
Pep1 (23 aa part of a 
cytosolic protein from 
Arabidopsis)

PEPR1 (Arabidopsis) Huffaker et al. (2006), Yamaguchi et al. 
(2006)

Oligogalacturonides (OGs) WAK1 (Arabidopsis) Brutus et al. (2010) and Nothnagel et al. 
(1983)

Cutin Not identified Schweizer et al. (1996) and Kauss et al. 
(1999)

Hydroxyproline-rich 
systemin

Not identified Pearce and Ryan (2003) and Heiling 
et al. (2010)

Extracellular ATP (eATP) Does not respond to 
nucleotide 1

Choi et al. (2014) and Jeter et al. (2004)

(continued)
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polymer of plant cell wall and hence provides strength against degradation caused 
by pathogen. To inhibit the pathogen multiplication, plants also produce PR proteins 
such as β-1-3 glucanase and chitinase. All these responses are sufficient to over-
come most of the microbes or pathogens (Dou and Zhou 2012; Dodds and Rathjen 
2010). Plants, defective in PRR or PTI signaling components, are often more sus-
ceptible to pathogens.

The general elicitors for PTI in plants were oligosaccharides or glycoproteins 
(Boller and Felix 2009). The increasing amount of genomic information leads to the 
identification of novel protein elicitors and their corresponding epitopes. Bacterial 
peptides like Flg22 and elf18 are derived from surface-associated flagellin protein 
(Flg) and translocation elongation factor Tu (Ef-Tu), respectively (Felix and Boller 
2003; Zipfel et al. 2006). Apart from these two well-studied elicitors, bacterial gly-
coconjugates including peptidoglycan (PGN) which provides strength to the cell 
envelope of Gram-positive and Gram-negative bacteria also work as elicitor of plant 
innate immunity (Erbs et al. 2008; Willmann et al. 2011). Lipopolysaccharide (LPS) 
carrying lipid A moiety from the Gram-negative bacteria is a potent MAMP for 
mammals. It is responsible for activating pro-inflammatory responses via toll-like 
receptor 4 (TLR4) in mammals. Similarly, LPS from the outer membrane of Gram- 
negative and Gram-positive bacteria also evokes innate immune response in plants 
(Silipo et al. 2005; Erbs and Newman 2012). Recently, it has been discovered that 
Arabidopsis thaliana can sense LPS, specifically from Pseudomonas and 
Xanthomonas. Gene knockout studies showed that bulb-type lectin S-domain-1 
receptor-like kinase LORE (SD1-29) is essential for the perception of LPS in plants. 
These results were further confirmed when LORE mutants were found hypersus-
ceptible to Pseudomonas syringae infection. Further studies with chemically 
degraded LPS, isolated from Pseudomonas species, proved that LORE detected 
mainly the lipid A moiety of LPS. The heterologous expression of LORE in tobacco 
conferred sensitivity to LPS, which confirmed its key function in LPS sensing (Ranf 
et  al. 2015). Oligosaccharide derived from fungus and oomycetes also act as 
MAMP/PAMP. Fungal chitin and its derivatives N-acetylglucosamine are respon-
sible for induction of innate immunity in monocot and dicot plants.

Apart from bacteria and fungus, viruses and nematodes also target plants and 
cause pathogenicity. So far not a single conserved viral MAMP/PAMP has been 

Table 4.1 (continued)

Name
Corresponding plant 
receptor (PRR) References

Plant elicitor peptides 
(Peps)

PEPR1/PEPR2 Pearce et al. (1991, 2001), Huffaker 
et al. (2006), Yamaguchi et al. (2010), 
Huffaker et al. (2011), Yamaguchi and 
Huffaker (2011), Huffaker and Ryan 
(2007), and Huffaker et al. (2013)

AtHMGB3 Not identified Choi et al. (2016)
NAMPs
Ascr#18 Not identified Choi and Klessig (2016)
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reported. However, plants generally defend themselves from viruses via RNA 
silencing mechanism (RNAi). To counter such defense mechanism, plant viruses 
developed RNAi silencing suppressors, many of which bind with double-stranded 
RNA (dsRNA) (which generally acts as PAMP) and attenuate RNAi mechanism 
(Csorba et al. 2009; Ruiz-Ferrer and Voinnet 2009). Nematodes are also reported to 
parasitize plants, but detailed perceived signal is not known. Recently, defense sig-
naling molecules from different plant-parasitic nematodes have been identified. 
They belong to conserved nematode pheromone family called ascarosides. Ascr#18 
is among one of them which induces innate immunity in different plants via activat-
ing defense genes, MAPKs, enhancing resistance against bacteria, viruses, fungi, 
and oomycetes.

Due to their sessile lifestyle, plants are subjected to biotic stresses as well as a 
multitude of abiotic stress factors (e.g., cold, excess water, increased salt concentra-
tions). In animal systems, the C-type lectins represent a key player in the recogni-
tion of pathogens and the induction of the immune response, whereas C-type lectins 
in plants are rather rare. To recognize lectins in plants, the membrane-bound PRRs 
carry extracellular lectin domains, that are coupled to intracellular Ser/Thr kinase 
domains. These lectin receptor kinases (LecRKs) are further categorized into four 
types: G-, C-, L-, and LysM-type (Bouwmeester and Govers 2009; Cambi et  al. 
2005; Vaid et  al. 2012, 2013; Singh and Zimmerli 2013). In plants the G-type 
LecRKs carry a lectin domain belonging to the Galanthus nivalis agglutinin (GNA) 
family. There are 32 G-type LecRKs identified from Arabidopsis and about 100 
from rice. However it is not clear whether these lectin domains play a role in the 
interaction with pathogen or not (Vaid et al. 2012).

Currently 11 PRRs with known ligands have been characterized from different 
plant species. Flagellin sensing 2 (FLS2) and EF-TU receptor (EFR), resistant to 
Xanthomonas oryzae pv. oryzae (Xa21), detect the bacterial MAMP flagellin 
(flg22), elongation factor Tu (elf18), and the Ax21 sulfated protein (AxYS22), 
respectively. The LysM proteins LYM1, LYM2, and chitin elicitor receptor kinase 1 
(CERK1) are responsible for the perception of bacterial peptidoglycans (PGN), 
whereas ethylene-inducing xylanase receptors (LeEIX1/2) sense fungal xylanase, 
and both chitin elicitor-binding protein (CEBiP) and CERK1 recognize fungal chi-
tin (Borner et al. 2003; Kaku et al. 2006; Miya et al. 2007; Shimizu et al. 2010). The 
PRRs differ in their dependence on BRI1-associated kinase 1/somatic embryo 
receptor kinase 3 (BAK1/SERK3), a LRR-RLK identified as a co-receptor for the 
brassinosteroid insensitive 1 (BRI1), but now it is known to regulate multiple sig-
naling pathways (Chinchilla et al. 2009). PRRs not only mediate MAMP-/PAMP- 
triggered immunity (PTI), the first layer of active defense in plants, but are also 
required for non-self-discrimination during symbiotic plant-microbe interactions 
(Boller and Felix 2009). This includes LysM receptor-like kinase 3 (LYK3) and 
NOD factor perception (NFP) perceiving bacterial nodulation factors (NF) and 
symbiosis receptor kinases (SYMRK) necessary for bacterial and fungal symbiosis 
(Gherbi et al. 2008; Limpens et al. 2003; Stracke et al. 2002; Madsen et al. 2011).
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4.2  Bacterial PAMPs

4.2.1  Flagellin (Flg)

Flagellin is an essential structure of most of the bacteria as it provides motility and 
in some cases assists in binding to the host cells. It is an oligomeric proteinaceous 
structure made up of monomeric multidomain subunit of flagellin (Flg). In animals, 
flagellin is recognized by surface-localized toll-like receptors (TLR5) (Ramos et al. 
2004). In plants such as Arabidopsis and tomato, it is conserved in the N-terminal 
of flagellin which elicits innate immune response. Studies in plants showed that 
only 22 amino acids of flagellin (Flg22) are responsible to activate immune response 
in plants (Felix et  al. 1999). To decipher the receptor of Flg22, various genetic 
approaches have been applied in Arabidopsis. It has been observed that among vari-
ous mutants of Arabidopsis, it is FLS2 mutant which is susceptible to pathogen. The 
gene responsible for coding FLS2 is located on chromosome number 5 in Arabidopsis 
and belongs to the RLK family. Further studies proved that it is LRR domain of 
FLS2 which is responsible for binding with Flg22 (Gomez-Gomez and Boller 2000; 
Bauer et al. 2001). However, it is not the same conserved domain of Flg22, which is 
recognized by all plants. In case of tomato (Solanum lycopersicum), it is Flg15, a 
shorter version of Flg22 from N-terminal, which elicits the immune response, 
whereas in rice it is the full-length flagellin which gives better immune response as 
compared to Flg22. Heterologous expression studies of FLS2 from Arabidopsis in 
tomato cells further proved its specificity for Flg22. Different plants perceived dif-
ferent epitopes of flagellin. For example, 15-amino-acid-long peptide from E.coli 
Flg has shown high response in tomato, whereas the same peptide is not able to 
elicit immune responses in tobacco (Newman et al. 2013). Differences in the per-
ception of flagellin are not limited to different plants, but it is also observed in dif-
ferent species of the same family. In other studies, when FLS2 from tomato is 
expressed in Nicotiana benthamiana cells, they gained flagellin perceptions, spe-
cific for tomato (Robatzek et al. 2007).

4.2.2  Elongation Factor TU (EF-Tu)

Protein biosynthesis is essential for the survival of microorganisms where mRNA 
and ribosomes play a crucial role. During protein synthesis, elongation factors are 
associated with ribosomes. EF-Tu is among one of them and is present in abundance 
in the bacterial cells (Jeppesen et al. 2005). N-terminal of elongation factor is highly 
conserved and has elicitor property in plants. Either 28-amino-acid- or 16-amino- 
acid-long protein form N-terminus named elf28 or elf16, respectively, is responsible 
for elicitor property. Each elicitor is perceived by specific or common receptors in 
plants. EF-Tu is also perceived by EF-Tu receptor in plants (EFR) and is indepen-
dent from the Flg, as FLS2 mutants are active against EF-Tu and elicit innate 
immune responses in plants (Kunze et al. 2004). Cross-linking assays in Arabidopsis 
cells confirmed that elf18 and flg22 recognized different receptors, whereas they 
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induced a small pool of genes. Further combined treatments of elf26/elf18 and flg22 
did not show any additive effect of immune responses (Zipfel et al. 2006). Studies 
with EFR mutant further showed no response-like oxidative burst and increased 
ethylene synthesis, and resistance against Pseudomonas syringe pv. tomato (Pst) 
DC3000 was observed when challenged with EF-Tu derivatives. On the other hand 
Arabidopsis Col-0 and fls2 mutant respond perfectly against EF-Tu elicitor. N. ben-
thamiana does not have a perception system for Elf-Tu. Heterologous expression of 
EFR in N. benthamiana makes it active against EF-Tu elicitor and has been con-
firmed that it acts as the functional receptor (Zipfel et al. 2006). Further, the effi-
ciency of Agrobacterium tumefaciens (At)-mediated transformation in EFR mutant 
has been increased as compared to the wild type. This indicates that EF-Tu recogni-
tion reduced the Agrobacterium-mediated transformation (Zipfel et al. 2006).

4.2.3  Peptidoglycan (PGN)

Gram-negative and Gram-positive bacteria cell envelopes have peptidoglycan which 
provides rigidity to their membranes. Since eukaryotes do not have PGN, therefore 
PGN becomes excellent target to host immune system (McDonald et  al. 2005; 
Dziarski and Gupta 2006). PGNs are complex glycan structures which are hold 
together with oligopeptides. Chemically, they are composed of alternative 
N-acetylglucosamine (NAG) and N-acetylmuramic (NAM) with short peptides in 
between (Newman et al. 2013). Studies in tomato showed that pre-inoculation with 
Staphylococcus aureus’s PGN reduced the bacterial infection in PGN treated tis-
sues. S. aureus PGN was considered as an active elicitor as it induces extracellular 
alkalinization in cultured tobacco cells. No such response was observed in cultured 
tomato cells, indicating that PGN is perceived differently in Solanaceae (Felix and 
Boller 2003). Studies in Arabidopsis confirmed that PGN from Gram-negative and 
Gram-positive bacteria acts as an elicitor and evokes innate immune responses in 
plants (Gust et al. 2007; Erbs et al. 2008). Further, it has been shown that sugar 
backbone of Gram-positive PGN is responsible for the immune response in plants. 
Derivatives of PGN like muramyl dipeptide (MDP) or the muropeptide dimer are 
not responsible for triggering immune responses in plants, whereas these are easily 
perceived in insects and vertebrates (Traub et al. 2006). On other hand, PGN from 
two Gram-negative bacterial plant pathogens Xcc and At and their derivatives 
induces immune responses including ROS generation, PR1 gene expression, extra-
cellular pH increase, and callous deposition (Erbs et al. 2008). Further it has been 
observed that derivatives like muropeptides are more effective as compared to the 
total PGN structures. Hence, we can say that PGN from Gram-negative and Gram- 
positive bacteria is perceived by different mechanisms. It could be due to different 
structure and recognition sites of muropeptides of human pathogen vs. plant patho-
gen. Studies with Arabidopsis cerk1 mutant plant enhanced ROS response after 
treatment with PGN from Gram-negative Pst DC3000 and indicated its independent 
perception system for CERK1 (Newman et al. 2013).
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4.2.4  Lipopolysaccharide (LPS)

Gram-negative bacteria have two-membrane architecture. It has an outer membrane 
followed by periplasmic space and an inner membrane. Each structure has its own 
function. Outer membrane contributes to the permeability as well as supports the 
growth of bacteria in unfavorable environments. LPS, a major component of the 
outer membrane, interacts with plants and plays a major role in inducing innate 
immune response (Newman et al. 1995; Bedini et al. 2005; Dow et al. 2000; Silipo 
et  al. 2005). LPS consists of core oligosaccharides and a lipid O-polysaccharide 
part. Since like dissolves like, it is the lipid part which is embedded in the outer 
phospholipid bilayer of bacterial membrane and referred as lipid A.  Lipid A is 
linked to the core oligosaccharide via 3-deoxy-d-manno-2-octulosonate (KDO). 
The core oligosaccharide is made up of short sugar and O-antigen. The composition 
of O-antigen is repeating oligosaccharide units (Raetz and Whitfield 2002). LPS of 
various phytopathogenic bacteria has O-antigen, composed of oligorhamnans 
(Bedini et al. 2002). To decipher the structure of LPS responsible to trigger immune 
response in plant, different O-antigen polysaccharides and different length of oli-
gorhamnans were tested in Arabidopsis. It has been observed that PR genes includ-
ing PR1 and PR2 were induced by tri-hexa- and nanosaccharides. Further, the 
increasing length of sugar and their coiled structure of O-antigen (synthetic) evoke 
plant innate immune responses ((Bedini et al. 2002). Xcc lipooligosaccaride (LOS) 
and its derivatives have shown the induction of PR genes in Arabidopsis. Therefore 
we can say that Xcc LOC and Xcc core oligosaccharides induce innate immunity in 
plants (Newman et al. 2013). However, in the case of tobacco, neither lipid A nor 
O-chain of LPS (Xcc) induces any innate immunity. Interestingly the inner core of 
the LPS was responsible for the induction of oxidative bursts (Braun et al. 2005). It 
has been observed that phosphorylation of lipid A affects its biological activity in 
mammalian system (Gutsmann et  al. 2007). The same has been determined in 
Arabidopsis too. Studies with dephosphorylated Xcc LOS in Arabidopsis showed 
no localized induced responses (LIR) (Silipo et al. 2005). This result indicates that 
the phosphate group has its important function in the binding with specific receptor 
in plants. LPS also plays an important role in prime expression of defense response 
in plants, post bacterial infection. This includes synthesis of antimicrobial com-
pound including feruloyl tyramine (FT) and p-coumaroyl tyramine (CT) (Newman 
et al. 2002, 2007; Conrath et al. 2006). Induced systemic response (ISR) was also 
observed in Arabidopsis, and it was the O-antigen of LPS responsible for such kind 
of response. This observation was further confirmed in an experiment where bacte-
rial mutant lacking O-antigen was not able to induce ISR (van Loon et al. 1998). 
Apart from ISR, systemic acquired response is also observed in plants and is respon-
sible for increase in salicyclic acid (SA) and related signaling (Schneider et  al. 
1996; Ryals et al. 1996). Recent study showed that it is not the necrotic lesion for-
mation (which induces SAR in plants) but MAMPs, Flg, or LPS that is responsible 
for bacterial induction of SAR. Studies with Pseudomonas aeruginosa LPS, Flg, or 
nonhost bacteria in Arabidopsis showed induction of immune response such as 
accumulation of SA and PR gene expression as well as SAR marker, 
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flavin-dependent monooxygenase 1 gene in treated as well as in nontreated distal 
leaves (Mishina and Zeier 2006, 2007). The exact downstream signaling system 
acquired response is not known clearly.

LPS is known to induce immune response in dicots. Recent studies in monocots 
like rice with LPS from pathogenic or nonpathogenic bacterium induced defense- 
related gene as well as ROS. These results indicate that monocot and dicot may have 
a common mechanism (Desaki et al. 2006, 2012). However, LPS from some bacte-
ria showed programmed cell death, which is not elicited in the case of dicot (Desaki 
et  al. 2006). The exact mechanism for LPS perception in plant is not known. 
However, fluorescein-labeled Xcc LPS showed that they are internalized in N. taba-
cum cells, similar to the endocytosis process in mammals (Gross et al. 2005). Still 
there is no specific PRR identified for perception of LPS in plant.

Different groups are attempted to identify PRR for LPS in plants. Transcriptomic 
analysis of Arabidopsis thaliana cells post B. cepacia LPS treatment showed that 
there was no induction of callous synthesis genes (Livaja et al. 2008). Moreover, 
genes involved in ROS production were also not upregulated. However, LPS from 
B. cepacia induced PR3 and PR4 gene expression in Arabidopsis. Other sources of 
LPS like E.coli and P. aeruginosa induced PR1 and PR5 expression in Arabidopsis 
leaves (Mishina and Zeier 2007). Differences in these results could be due to differ-
ent plant system as well as different sources of LPS (Newman et al. 2013).

Plants also have the ability to modify LPS. This property is observed when lipid 
A or structures within LPS are altered in symbiotic interaction with plants 
(Kannenberg and Carlson 2001). These changes are responsible for the increase in 
the resistance against bacteria or to inhibit activity of lipid A in inducing host 
defense (Newman et al. 2013). Acylation and phosphorylation of lipid A are respon-
sible for the induction of immune response in plants (Silipo et al. 2008). Lipid A 
from Halomonas magadiensis, an extremophilic and alkalinophilic Gram-negative 
bacterium, has low degree of acylation and is known to inhibit E. coli lipid A 
immune response in mammalian cells (Ialenti et al. 2006). Studies showed that dif-
ferences in lipid A structure like acylation made them act as agonist or antagonist 
(Munford and Varley 2006). H. magadiensis’s lipid A acts as antagonist for the 
action of E. coli lipid A in Arabidopsis. LPS for the experimental studies in plants 
is prepared from bacterial culture and grown in artificial medium. Alteration in LPS 
structure could occur when they multiply in plants. These changes could be impor-
tant for the recognition and downstream signaling point of view. Mass spectroscopy 
and transcriptomic analysis of bacteria isolated from plants may provide fruitful 
information in this direction. Lipid A-like molecules are absent in plants like 
Arabidopsis; however, the six orthologous genes for the synthesis of lipid A, out of 
nine in E. coli, are present in Arabidopsis. Knockout studies of these genes showed 
that mutations are viable; however they are able to produce lipid A-like precursors 
(Li et al. 2011). It may be possible that higher plants may acquire lipid A biosyn-
thetic genes from Gram-negative bacterium via endosymbiosis, and hence lipid A 
may play an important role in the structure of mitochondria or chloroplast mem-
brane (Newman et al. 2013). Lipid A-like molecules may be involved in signaling 
in Arabidopsis, but the mechanism of LPS perception in plant is still unknown.

4 Pathogen-Associated Molecular Patterns and Their Perception in Plants



88

4.2.5  XA21-Mediated Immunity (Ax21)

XA21 receptor  is identified in rice; however its ligand Ax21 has been discovered 
recently. Ax21 is present in Xanthomonas spp., Xylella fastidiosa, and 
Stenotrophomonas maltophilia (a human pathogen), and hence it is conserved in 
nature and has an important biological role. Ax21 is composed of 194 amino acids, 
and only 17-amino acid (sulfated) peptide is responsible for its biological activity 
(Bogdanove et al. 2011). Xa21 gene is located in chromosome number 11 and encodes 
receptor kinase-like protein, having LRR transmembrane (TM), juxtamembrane 
(JM), and cytosolic kinase domain. XA21 gene is responsible for providing resistance 
to a large number of Xanthomonas oryzae pv. oryzae (Xoo) species (Song et al. 1995; 
Wang et al. 1996). XA21 is among the seven members of gene family. Among the 
seven, XA21D is closest to XA21 and provides resistance to plants. However, they dif-
fer in the degree of resistance as XA21D provides mild resistance. Structural LRR 
domain of XA21 and XA21D is 99% identical. However, XA21D lacks transmembrane 
and kinase domain (Song et al. 1997; Wang et al. 1998). Different proteins are known 
to interact with XA21. For example, ATPase XB24 binds and promotes XA21 phos-
phorylation and keeps it in inactive state. Later binding of Ax21 to XA21 dissociates 
XB24 from XB21/XA21 complex and activates XA21 (Chen et al. 2010).

4.3  Fungal and Oomycete MAMPs

4.3.1  Chitin

Fungal chitin and β-glucan from the P. megasperma act as MAMPs. In fungus, 
branched β-glucan is cross-linked with chitin, whereas in oomycetes cross-linking 
is done with cellulose. Chitin and its fragments are responsible for inducing immune 
response in plants. Fungal chitin is recognized by CEBiP and CERK1 (Kaku et al. 
2006; Shimizu et al. 2010). Studies in rice showed that RLP CEBiP binds with chi-
tin fragments at cell surface and interacts with LysM-RLK OsCERK1 for down-
stream signaling (Miya et al. 2007). In Arabidopsis, three CEBiP-like proteins have 
been reported, and they are designated as LYS1, LYS2, and LYSM. Heterologous 
expression of each in tobacco BY cells, followed by test for binding ability with 
chitin oligosaccharide, showed that LysM2 (AtCEBiP) have the highest affinity 
(Shinya et al. 2012). Biotinylated (GlcNAc)8 binding studies with CEBiP prove its 
cell surface localization. However, single or triplet knockout of LysM1, AtCEBiP, 
and LysM3 as well as overexpression of AtCEBiP suggests that they are not respon-
sible for signaling in Arabidopsis (Shinya et al. 2012). Therefore, we may conclude 
that rice and Arabidopsis have different receptors for chitin perception. In 
Arabidopsis, five LysM RLKs1-5 have been reported (Lyk1, Lyk2, Lyk3, Lyk4, and 
Lyk5) (Wan et al. 2012). Lyk1 is also known as CERK1. Knockout studies have 
been performed to determine their role in chitin signaling. It has been observed that 
in Lyk4, mutant immune response has been reduced. Moreover, Lyk mutant plants 
were more susceptible to Alternaria brassicicola and bacterial pathogen Pst 
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DC3000 (Wan et al. 2012). Apart from this, lysine motif-containing proteins, LYP4 
and LYP6, are responsible for binding with chitin as well as PGN and may function 
as dual PRR in rice. Therefore, in rice, overlapping perception system does exist for 
fungal and PGN. However, LYM1 and LYM3, which are orthologs of LYP4 and 
LYP6  in Arabidopsis, recognize only PGN and are not able to recognize chitin 
(Willmann et al. 2011).

4.3.2  Ethylene-Inducing Xylanase (EIX) and AVE1 Peptide

Tomato was resistant against Verticillium dahliae and V. albo-atrum (Kawchuk 
et al. 2001). Genes responsible for the resistance lie in Ve loci, Ve1 and Ve2. Both of 
them encode the surface receptors which belonged to receptor-like protein (RLP) 
class. Studies showed that among Ve1 and Ve2, Ve1 was found responsible for 
developing resistance. Further knockout studies were done with BAK1, which con-
fer more susceptibility to tomato against Verticillium infection (Fradin et al. 2009). 
A putative ligand for Ve1 was AVe1 (avirulence on Ve1 tomato) peptide. It was 
observed that Ave1 was conserved among many fungus and plant pathogenic bacte-
ria like Xanthomonas axonopodis pv. citri. Ave1 was also found to have homology 
with plant natriuretic peptides (PNPs) which is responsible for maintaining homeo-
stasis in stress conditions (Wang et al. 2011). Ave1 acts as an elicitor and induces 
immune response via Ve1-mediated downstream signaling. Hence, we can say that 
Ave1 peptide acts as MAMP, and Ve1 acts as PRR (Thomma et al. 2011). There are 
other PRRs in tomato including RLPs S1Eix1 and S1Eix2. They also have homol-
ogy with tomato Ve1 and Cf PRRs (Ron and Avni 2004). They are known to recog-
nize fungal ethylene-inducing xylanase. EIX1 (β-1-4-endoxylanase) is proteinaceous 
in nature having molecular weight of 22 kDa. It is isolated from Trichoderma viride 
and is responsible for inducing innate immunity in tomato and tobacco. The primary 
sequence of S1Eix1 and S1Eix2 is 81.4% identical and has the ability to bind with 
EIX. However, they have different functions, such as S1Ex2 when binds with Ex1 
induces innate immune response, while binding of Ex1 with S1Ex1 inhibits plant 
defense (Bar et al. 2010; Ron and Avni 2004).

4.3.3  Damage-Associated Molecular Pattern (DAMP)

Plant-derived molecules in certain cases are responsible to induce immune response. 
This system is similar to mammals, where immune system can detect danger 
through DAMPS (Seong and Matzinger 2004; Boller and Felix 2009) and is respon-
sible for inflammatory response. Systemin, which is an 18-amino-acid peptide, 
induces immune response in plants (tomato) (Pearce et  al. 1991; McGurl et  al. 
1992). Systemin is derived from its cytoplasmic protein precursor, prosystemin 
(Narvaez-Vasquez and Ryan 2004). Upon cell damage, systemin is released, which 
then acts as DAMP. Earlier studies showed RLK SR160, which is an ortholog of 
BRI1 of tomato, acts as a receptor for systemin (Scheer and Ryan 1999, 2002). 
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Putative cytoplasmic peptide (Pep1) in Arabidopsis is responsible for activating 
defense genes and alkalization in cell culture. Pep1 is a 23-amino-acid-long peptide 
and has seven homologues, which are derived from PROPEP1-7 (Huffaker et al. 
2006). Pep1 is perceived by PEPR1 receptor which belongs to LRR X1 subfamily 
(Yamaguchi et al. 2006). On the basis of primary sequence, a second receptor for 
Pep peptide was found and designated as PEPR2. PEPR1 and PEPR2 transcription 
occurred under different conditions including wounding Pep peptide and specific 
MAMP. Binding studies with peptide and receptor showed redundancy, as Pep1 and 
Pep2 both bind with PEPR1 and PEPR2, whereas PEPR1 binds with Pep3-6 
(Yamaguchi et al. 2010).

Cutin and oligogalacturonides (OGs) released from plant cell walls also act as 
DAMPs (Denoux et  al. 2008; Brutus et  al. 2010; Schweizer et  al. 1996). Wall- 
associated kinase1 (WAK1) acts as a receptor for OG (Brutus et al. 2010). However, 
receptor for cutin is still not known. OG is known to evoke immune responses in 
plants by activation of MAPK, ROS production, callous deposition, and calcium 
release in cytoplasm as well as activation of defense genes (Chandra et al. 1997; 
Denoux et al. 2008). Another elicitor which comes in DAMP category in plants is 
the extracellular ATP (eATP). Surface-associated receptor for eATP perception does 
not respond to nucleotide 1 (DORN1) (Choi et al. 2014). It has been observed that 
a mutant of DORN1 suppressed transcriptional response to wounding and upregu-
lated genes post eATP application, which was wound-inducible (Tanaka et al. 2014). 
eATP induces innate immune response as it is able to activate MAPK, Ca2+ influx, 
synthesis of JA, and ethylene as well as induce defense-related genes (Jeter et al. 
2004; Song et al. 2006; Tanaka et al. 2014).

In Arabidopsis, HMGB protein AtHMGB3 is reported to act as DAMP.  In 
Arabidopsis there are 15 genes, responsible to encode HMG-box domain- containing 
protein. They are further divided in four groups: (1) HMGB-type protein, (2) 3X 
HMGB which contains three HMG boxes, (3) A-/T-rich interaction domain (ARID- 
HMG protein), and (4) SSRP1, structural-specific recognition protein 1 (Merkle and 
Grasser 2011). On the basis of domain structure and nuclear location, there are eight 
different types including HMGB1/2/3/4/5/6/12/14. Among these HMGB2/3/4 are 
cytoplasmic as well as nuclear localized (Launholt et al. 2006; Pedersen and Grasser 
2010; Merkle and Grasser 2011). Recombinant AtHMGB3 when infiltrated in 
leaves induced MAPK activation and deposition of callus, induced defense gene, 
and developed resistance against Botrytis cinerea (Choi et al. 2016).

SA binds to AtHMGB3 through its conserved Arg and Lys residues and abol-
ishes its DAMP activity (Choi et al. 2016). However, SA is a positive regulator of 
immune response in plants and provides resistance to biotrophic and hemi- biotrophic 
pathogen. JA is responsible for providing resistance against necrotrophic pathogen 
as well as insects (Vlot et al. 2009; Dempsey et al. 2011). Signaling pathway of JA 
and SA is antagonistic (Thaler et al. 2012). Necrotrophic pathogen caused infection 
and cellular damage, which leads to the release of AtHMGB3 into extracellular 
space, which activated JA-/ethylene-associated defense genes. However, bio- 
pathogenic pathogen infection increased SA levels which suppressed AtHMGB3 
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DAMP-mediated immune defense and activated assay-associated defense gene 
expression (Choi et al. 2016).

4.3.4  Nematode-Associated Molecular Pattern (NAMP)

Nematodes are known to parasitize both plants and animals (Lambert et al. 1999; 
Vercauteren et  al. 2001; Kyndt et  al. 2012). However, elicitor for plants is not 
known. Recently a group of defense signaling molecules from root-knot and cyst 
nematodes have been identified (Manosalva et al. 2015). They are conserved nema-
tode pheromones called ascarosides. The most abundant ascaroside is Ascr#18. It is 
responsible to induce innate immune response in the plant including activation of 
MAPKs, defense genes, SA, and JA defense signaling pathways. It is responsible 
for enhanced resistance against viral, bacterial, fungal, and oomycete pathogen and 
root-knot nematodes in different monocot and dicot plants (Choi and Klessig 2016).

4.4  Binding of Bacterial PAMPs with Plant PRRs

Perception of PAMPs requires either homodimerization, heterodimerization, or het-
eromultimerization of PRRs. Recent advances in biochemical structure and genetic 
studies open the new window to know about the molecular mechanisms underlying 
PAMP binding to plant PRR.

4.5  Heterodimerization: Flagellin Perception in Arabidopsis

In Arabidopsis, bacterial flagellin is recognized by PRR, FLS2, which is LRR- 
RLK. Among full-length bacterial flagellin, the conserved 22 amino acids behave 
like epitope flg22 (Gomez-Gomez and Boller 2000). The FLS2 ectodomain has 28 
LRRs and directly binds to flg22 (Chinchilla et al. 2006). FLS2 exists in dimer form 
even in the absence of elicitor, but its relevance is not clear yet (Sun et al. 2012, 
2013a). Although FLS2 is conserved in most of the plant species, still there are lots 
of differences in specificity of recognition (Boller and Felix 2009). This has been 
proved in a study where a shorter peptide flg15 behaves as an agonist in tomato, 
whereas it acts adversely in Arabidopsis (Mueller et al. 2012; Bauer et al. 2001; 
Felix et al. 1999; Robatzek et al. 2007). Comparative and mutagenic studies of both 
FLS2 LRRs and flg peptides have identified possible LRRs involved in flg22 recog-
nition (Dunning et al. 2007; Helft et al. 2011; Mueller et al. 2012). Further studies 
have shown that the N-terminal part of flg22 is responsible for receptor binding, 
whereas C-terminal part is a must for the activation of the immune response (Meindl 
et al. 2000; Sun et al. 2013a). Flg22 perception directs the FLS2 to form a complex 
with regulatory LRR/RLK and BAK1/SERK3 (Chinchilla et al. 2007; Schulze et al. 
2010). This indicates the close proximity of FLS2 and BAK1 in the plasma mem-
brane. It has been further proved by structural studies that the N-terminal of flg22 
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binds to the concave surface of FLS2 ectodomain and the C-terminal region of the 
FLS2-bound flg22 interacts with BAK1 ectodomain (Sun et al. 2013a). This interac-
tion leads to the stabilization of FLS2-BAK1 dimerization, and thus FLS2-BAK1 
heterodimerization is both ligand and receptor mediated as shown in Fig.  4.1. 
Hence, it is proven that flg22 binds to FLS2 first and later with BAK1; therefore 
BAK1 acts as a co-receptor for flg22 and is essential for signaling (Chinchilla et al. 
2007; Sun et al. 2013a). Similar mechanism has been reported recently in Arabidopsis 
where LRR-RLK BRI1 (the receptor for the plant hormone brassinosteroid, which 
regulates growth and development) binds with BAK1 or the BAK1-related protein 
SERK1 (Santiago et al. 2013; Sun et al. 2013b). These results suggest that different 
LRR-containing RLKs (and RLPs) may be involved in similar heterodimeric com-
plexes with BAK1 or related SERK proteins. The increasing number of newly iden-
tified LRR-RLKs and LRR-RLPs has shown their association with BAK1 and 
related SERK proteins. However some mechanistic differences exist between dif-
ferent plant species. For example, in rice (Oryza sativa) ortholog of BAK1, 
OsSERK2, forms a complex with the LRR-RLK XA21, and thus it confers resis-
tance against Xanthomonas oryzae pv. oryzae (Chen et al. 2014). Due to the absence 
of confirmed ligand for XA21, it is not clear yet if the interaction between XA21- 
OsSERK2 is enhanced after PAMP perception or not (Bahar et al. 2014). FLS2- 
BAK1 dimerization is independent of kinase activity, whereas the association of 
OsSERK2 with the intracellular domains of ligand-binding receptors is kinase 
dependent (Schwessinger et al. 2011; Chen et al. 2014; Sun et al. 2013b).

FLS2BAK1

flg22

Fig. 4.1 The flg22 peptide 
perception in Arabidopsis 
directs the ectodomain of 
LRRs of FLS2 to form a 
stable heterodimer with the 
co-receptor BAK1
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4.6  Binding of Fungal PAMPs with Plant PRRs

Similar to  bacterial PAMPs, fungal PAMPs also need homodimerization, 
and heteromultimerization.

4.6.1  Homodimerization: Chitin Perception in Arabidopsis

In Arabidopsis thaliana LysM-RLK CERK1/RLK1/LYK1 is required for chitin percep-
tion (Wan et al. 2008; Miya et al. 2007). Three extracellular LysM domains of CERK1 
are responsible for the binding with oligomers of fungal chitin (Liu et al. 2012; Petutschnig 
et al. 2010; Miya et al. 2007). Seven to eight GlcNAc residues which constitute long 
chitin oligomers act as a bivalent ligand for CERK (Liu et al. 2012). This binding leads to 
the homodimerization of the CERK1 as shown in Fig. 4.2, which acts as an active recep-
tor complex responsible for initiating chitin- induced immune signaling. However CERK1 
is also able to bind with four to five GlcNac residues (shorter chitin oligomer), but their 
interaction does not induce CERK1 homodimerization, and hence does not trigger any 
immune responses (Liu et al. 2012). These studies highlighted that homodimerization of 
CERK1 is a must for signaling initiation, by bringing together CERK1 cytoplasmic 
domains, which contain an active kinase (Petutschnig et al. 2010), enabling intermolecu-
lar transphosphorylation. While CERK1 is the major chitin-binding protein in Arabidopsis 
and is strictly responsible for chitin-triggered immune responses, the other related LysM-
RLK LYK4 is also known for chitin binding and is involved in chitin perception (Miya 
et al. 2007; Petutschnig et al. 2010; Wan et al. 2008, 2012).

4.6.2  Heteromultimerization: Chitin Perception in Rice

LysM-RLP CEBiP is the major chitin-binding protein in rice (Kouzai et al. 2014; 
Kaku et al. 2006). CEBiP is a GPI-anchored protein with three extracellular LysM 
domains along with a C-terminal tail (Hayafune et  al. 2014; Kaku et  al. 2006). 
Binding of long chitin oligomers with OsCEBiP leads to its homodimerization, 

AtCERK1AtCERK1

chitin

PM

Fig. 4.2 Perception of 
seven to eight GlcNAc 
residues in Arabidopsis act 
as bivalent ligands and 
direct the formation of 
active receptor complex by 
homodimerization of 
AtCERK1
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which resembles with that of chitin-binding mechanism shown for Arabidopsis chi-
tin receptor AtCERK1 (Hayafune et al. 2014; Liu et al. 2012). As like other RLPs, 
CEBiP does not have cytoplasmic C-terminals responsible for signaling motifs, and 
therefore it requires assistance of additional proteins to initiate signaling (Kaku 
et al. 2006). In the presence of biologically active chitin, CEBiP is also known to 
form a hetero-oligomeric receptor complex with OsCERK1, which is the rice ortho-
log of AtCERK1 (Shimizu et al. 2010). OsCERK1 has only one single extracellular 
LysM domain and hence does not bind to chitin but is essential for chitin-mediated 
signaling (Shimizu et  al. 2010). These results showed that the chitin perception 
system in rice requires hetero-oligomeric receptor complex formed by dimers of an 
elicitor-binding CEBiP (LysM-RLP) and a nonligand-binding signaling-active 
OsCERK1 (LysM-RLK) as shown in Fig. 4.3 (Kaku et al. 2006; Shinya et al. 2012). 
This confirmation of hetero-oligomer receptor form a sandwich type receptor for 
chitin oligomers (Hayafune et al. 2014). Apart from CEBiP (OsLYP4 and OsLYP6), 
the LysM-RLPs is also known for chitin binding and responsiveness (Liu et  al. 
2012). In Arabidopsis, CEBiP orthologs are not required for classical chitin immune 
responses, including ROS burst or immune gene expression (Shinya et  al. 2012; 
Wan et al. 2012). However, the closest ortholog of CEBiP in Arabidopsis, AtLYM2, 
is known to bind chitin (Petutschnig et al. 2010; Shinya et al. 2012). The localiza-
tion of AtLYM2 is in plasmodesmata and AtLYM2 is responsible for the closure of 
plasmodesmata in CERK1-independent manner but upon chitin perception chitin- 
induced. In addition AtLYMs also provides resistance to fungal pathogens (Faulkner 
et al. 2013; Narusaka et al. 2013). Therefore, in Arabidopsis some localized cellular 
responses which are initiated by chitin are also involved in hetero-oligomerization 
between a chitin-binding LysM-RLP (AtLYM2) and an unknown LysM-RLK 

OsCEBiP OsCEBiP 

OsCERK1 OsCERK1 

chitin Fig. 4.3 Chitin perception 
in rice requires a 
multimeric receptor 
formed by dimers of 
OsCEBiP and OsCERK1
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similar to CERK1. OsLYP4 and OsLYP6 (CEBiP paralog) are also known to bind 
with the bacterial cell wall component (peptidoglycan, PGN) (Liu et al. 2012). In 
Arabidopsis, AtLYM1 and AtLYM3 (orthologs of CEBiP) are known to bind with 
PGN and not with chitin (Willmann et al. 2011). Here CERK1 is also required for 
PGN-induced responses without binding with PGN itself (Willmann et al. 2011). 
These results show that CERK1 plays a multifaceted role, as it is able to function as 
a ligand-binding PRR for chitin and also as a positive regulator of PGN responses. 
In Arabidopsis the complex between AtLYM1, AtLYM3, and AtCERK1 has not 
been confirmed yet biochemically; however these results indicate that PGN percep-
tion system in Arabidopsis resembles with that of rice chitin receptor, which 
involves hetero-oligomeric complex of ligand-binding RLPs and RLKs.

4.6.3  Perception of Fungal Xylanase and Ave Peptide

In tomato the only RLP involved in PAMP perception receptor for the fungal 
ethylene- inducing xylanase (EIX) is LeEIX1/2, encoded by the genes LeEIX1/2, as 
shown in Fig. 4.4a (Ron and Avni 2004). Both LeEIX1 and LeEIX2 are reported to 
bind with EIX independently. However it is only LeEIX2 that can transduce the 
signal when expressed transiently in tobacco. In Arabidopsis, a few additional RLPs 

xylanase

Eix1 Eix2

Ave1

Ve1

a b

Fig. 4.4 (a) Perception of fungal xylanase by Eix1/2 PRR and (b) Ave peptide by Ve PRR in 
tomato
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have been identified using reverse-genetic approaches, which linked to innate 
immunity. It has been reported that the chitin-inducible RLP52 gene mutant is more 
susceptible to adapted as well as non-adapted powdery mildews (Ramonell et al. 
2005). Similarly, atrlp30 as well as atrlp18 mutants are found susceptible to the non- 
adapted bacterium Pseudomonas syringae pv. phaseolicola 1448A (Wang et  al. 
2008). In addition to this, tomato LRR-RLP Ve1 mediates resistance to fungus 
Verticillium by recognizing a peptide Ave1 which is conserved in several fungi and 
bacterium Xanthomonas axonopodis as shown in Fig. 4.4b. Ve1 is also reported to 
mediate resistance against Fusarium oxysporum (Monaghan and Zipfel 2012).

4.7  Plant Viruses and PRRs

In animal systems, viral patterns inducing PTI are well known, but nothing similar 
has been reported from plants so far. In plants, antiviral defense is mediated by well- 
studied posttranscriptional gene silencing of viral RNA as well as through effector- 
triggered immunity, which includes the recognition of virus-specific effectors by 
resistance proteins. In Arabidopsis the regulator BAK1 plays an important role for 
antiviral defense as Arabidopsis bak1 mutants show increased susceptibility to dif-
ferent RNA viruses during compatible interactions. It is also studied that crude viral 
extracts induce several PTI marker responses in a BAK1-dependent manner; how-
ever, purified virions don’t. Hence, we may say that BAK1-dependent PTI contrib-
utes to antiviral resistance in plants; however specific PAMP for specific virus and 
its specific PRR are still not known, and further investigation is required in this 
direction (Korner et al. 2013).

4.8  Signaling

4.8.1  Activation of PRRs

The PRRs either contain a cytoplasmic kinase domain or are associated with RLKs. 
The binding of ligand to the extracellular domain of the receptor kinases leads to the 
activation of the intracellular kinase domain and which further phosphorylates the 
substrates, which contribute to intracellular signal transduction. Identified LRR- 
RLKs have an intracellular kinase domain with the potential for signaling, till they 
require dimerization with BAK1 (or a related SERK protein) post binding with 
ligand to transduce the signal as shown in Fig. 4.5.

BAK1 is a RD kinase, whereas most RLK PRRs (e.g., FLS2, EFR, XA21) are 
non-RD kinases, as they are having another amino acid in place of an otherwise con-
served arginine residue in the catalytic loop of the kinase domain (Dardick et  al. 
2012). Non-RD kinases seem to be associated with immune functions across king-
doms, as the association between non-RD and RD kinases for the initiation of PTI is 
similar to Drosophila and humans (Dardick et al. 2012). It has been observed that 
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FLS2 or EFR kinase domains have weaker kinase activity as compared to other RD 
kinases (e.g., BAK1 or BRI1) (Schwessinger et al. 2011); therefore it may be possi-
ble that non-RD ligand-binding RLK PRRs require the association of a strong RD 
kinase (such as BAK1) to enhance the phosphorylation process and initiate signaling 
(Dardick et al. 2012). This has been further proved in a mutagenesis study where 
mutations that impair complex formation between FLS2 and BAK1 eliminate the 
phosphorylation of both proteins as well as initiation of downstream signaling (Sun 
et al. 2013b). Hence, it shows that kinase activities of FLS2 and EFR are essential for 
flg22- and elf18-mediated responses (Cao et al. 2013; Schwessinger et al. 2011). In 
Arabidopsis, CERK1 itself contains an RD kinase domain and therefore does not 
require BAK1 to initiate chitin-triggered signaling (Gimenez-Ibanez et  al. 2009; 
Heese et al. 2007). However, signaling mediated by RD RLKs, including BRI1 or the 
PRRs PEPR1/PEPR2, still needs BAK1 (and other SERKs) (Gou et al. 2012; Krol 
et al. 2010; Li et al. 2002; Nam and Li 2002; Roux et al. 2011) indicating that SERK 
proteins are essential for the functioning of both RD and non-RD ligand- binding 
RLKs. SERKs act as kinase activity enhancers and are responsible for phosphoryla-
tion event in cis and trans, within PRR complexes. These phosphorylated PRR 

CYTOPLASM

AtCERK1

PM

BIK1

P

P

P

O2
O2 

_
 

AtCERK1

chitin

BIK1

BIK1

BSK1

SCD1

FLS2

RBOHD

MEKK

MKK

BAK1

flg22

P

P

MPK

Fig. 4.5 The flg22 peptide perception in Arabidopsis phosphorylates the cytoplasmic domains of 
FLS2 and BAK1, as well as the receptor like cytoplasmic kinase BIK1. Phosphorylated BIK1 gets 
released from the receptor complex, and further phosphorylates and activates NADPH oxidase 
AtRBOHD. In addition to this, RLCK BSK1 and the endocytosis regulator SCD1 are also required 
for the Flg22-mediated ROS burst. Similarly, BIK1 also get phosphorylated followed by chitin 
perception and activation of AtCERK1 and is required for the ROS burst. The activation of MAPKs 
and other downstream substrates followed by flg22 perception is not clear yet
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complexes regulate the interaction with specific substrates and activation of specific 
signaling branches, leading to various downstream responses. This event is similar to 
the observed generation of docking sites for downstream substrates of animal recep-
tor kinases driven by phosphorylation on specific residues (Lemmon and Schlessinger 
2010). BAK1 forms a complex with both BRI1 (regulating growth) and FLS2 (regu-
lating immunity) and contributes to signaling specificity in a phosphorylation- 
dependent manner (Schwessinger et  al. 2011). Further studies are necessary to 
understand the sequence and nature of the phosphorylation events triggered after 
ligand perception and how they contribute to signaling initiation and specificity.

RLPs generally lack intracellular signaling domains and therefore depend on the 
association with other kinases for signaling. It has been observed that LRR-type and 
LysM-type RLPs act as PRRs in association with BAK1 (or other SERKs) and 
CERK1, respectively, to fulfill their role of signaling kinase domains activated, post 
ligand perception. In tomato in addition to CERK protein, LRR-RLK SOBIR1 was 
recently found in association with several LRR-RLP PRRs, such as Eix2, Ve1, and 
Cf4 (Liebrand et al. 2013). It has been reported that silencing of SOBIR1 expression 
compromises Cf4- and Vel-mediated responses which indicate that SOBIR1 is a 
must for the accumulation of Cf4 and Vel (Liebrand et al. 2013). Since SOBIR1 is 
localized in the cytoplasmic vesicles, they may be necessary for adequate trafficking 
and providing stability to LRR-RLP-containing complexes (Liebrand et al. 2013). 
In Arabidopsis also, SOBIR1 is a must for proper functioning of several RLPs 
involved in innate immunity, which indicates that SOBIR1 is a common regulator of 
LRR-RLP PRRs in different plant species (Jehle et al. 2013; Zhang et al. 2013). Till 
date it is not clear how SOBIR1 regulates LRR-RLP accumulation. It has been 
observed that in rice, PRR XA21 (an LRR-RLK) autophosphorylation at several Ser 
and Thr amino acids subjected to phosphorylation-dependent mechanism is control-
ling protein stability (Xu et al. 2006).

Apart from this, for the accumulation of XA21, several non-kinase proteins are 
also required. It has been reported that ubiquitin ligase XB3 and XB25 (plant- 
specific ankyrin repeat) proteins interact with XA21 in plants as shown in Fig. 4.6. 
These are further transphosphorylated by XA21 kinase domain (Jiang et al. 2013; 
Wang et al. 1996). XB3 or XB25 is crucial for immune response as the reduced 
expression of XB3 or XB25 results in reduced accumulation of XA21 which conse-
quently compromises XA21-mediated immunity (Wang et  al. 2006; Jiang et  al. 
2013).

Recently it has been observed that the additional RLKs can be a part of PRR 
complexes. The LRR-RLK BIR2 is found to interact with BAK1 even in the absence 
of PAMP perception (Halter et al. 2014). The nature of BIR2 is a pseudo-kinase, and 
it negatively regulates BAK1 interaction with FLS2. Later during Flg22 perception, 
BIR2 dissociates from BAK1 which ultimately allows FLS2-BAK1 dimerization 
and downstream signaling (Halter et al. 2014).
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4.8.2  Downstream Events

For the downstream intracellular signaling, surface-associated PRRs and associated 
transmembrane proteins require cytoplasmic partners. Recently, receptor-like cyto-
plasmic kinases (RLCKs) have emerged as key substrates of PRR complexes and 
positive regulators of PTI signaling. In the absence of flg22 in Arabidopsis, RLCK 
BIK1 is associated with FLS2 and BAK1 (Lu et al. 2010; Zhang et al. 2010). Post 
flg22 perception, BIK1 gets phosphorylated by BAK1, which later phosphorylates 
both FLS2 and BAK1, and finally gets dissociated from the FLS2- BAK1 complex 
as shown in Fig. 4.5 (Lu et al. 2010; Zhang et al. 2010). BIK1 is also phosphorylated 
after elf18 perception and interacts with EFR and CERK1 and, therefore, plays a key 
role in downstream signaling (Lu et al. 2010; Zhang et al. 2010). This is further sup-
ported by mutagenesis studies, which showed that bik1 mutants are compromised in 
immune responses triggered by flg22, elf18, and chitin. Hence, they are more suscep-
tible to the pathogenic fungus Botrytis cinerea and non-adapted bacterial pathogens 
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Fig. 4.6 For the stability of XA21 in rice, it requires the E3 ligase XB3 as well as the PANK 
protein XB25 and forms a constitutive complex with OsSERK2. However the exact mechanisms 
of signal transduction followed by perception of Xanthomonas oryzae pv. oryzae (Xoo) is not 
known. The heteromultimeric chitin receptor complex formed by dimeric OsCEBiP and OsCERK1 
associates with various cytoplasmic proteins, which are required for signal transduction. Post chi-
tin perception, OsCERK1 phosphorylates receptor like cytoplasmic kinase OsRLCK185, which 
gets dissociated from the receptor complex after phosphorylation and further responsible for the 
activation of MAPKs. In addition, OsCERK1 also activates the Os-RacGEF1/OsRac1 module, 
which is responsible for the activation of chitin-induced ROS burst
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(Laluk et al. 2011; Veronese et al. 2006; Lu et al. 2010; Zhang et al. 2010). BIK1 is 
also reported to interact with PEPR1 and is involved in PTI amplification mechanism 
involving the gaseous hormone ethylene (Liu et al. 2013; Tintor et al. 2013; Zipfel 
2013; Laluk et al. 2011). These results further highlighted the important role of BIK1 
for the activation of PRR complexes in Arabidopsis innate immunity.

RLCK-VII subfamily contains more than 46 members, including BIK1, PBL1, 
PBL2, and PBL5. Among these, PBL1, PBL2, and PBL5 are known to regulate 
flg22-induced ROS burst (Liu et al. 2013; Zhang et al. 2010). It has been reported 
that BIK1 and PBL1 don’t have any role in flg22-induced activation of MAPKs 
(Feng et  al. 2012). However, MAPK activation via flg22 was suppressed upon 
expression of the bacterial uridine 50-monophosphate transferase AvrAC.  The 
AvrAC inhibits phosphorylation in conserved residues located in the activation site 
of BIK1 and related kinases (Feng et al. 2012). These results suggest that additional 
BIK1-related proteins, including PBL2 and PBL5, may be required for this response.

OsRLCK185 is a substrate of OsCERK1 in rice and responsible for chitin- and 
PGN-induced immune responses (Yamaguchi et al. 2013). It has been observed that 
OsCERK1 phosphorylates OsRLCK185, which later partly dissociates from the 
OsCERK1 complex post chitin perception (Yamaguchi et al. 2013). Earlier it was 
identified that RLCK BSK1 acts as a substrate of brassinosteroid receptor BRI1 and 
also acts as a positive regulator of brassinosteroid responses (Tang et  al. 2008). 
However, recently, it was found that BSK1was also associated with FLS2 and par-
tially dissociated after flg22 perception. BSK1 was also required for a subset of 
flg22-triggered responses, but not for the activation of MAPK (Shi et  al. 2013). 
BSK1 is a common positive regulator for both BRI1- and PRR-mediated signaling, 
but interaction of BIK1 with BRI1 acts as a negative regulator of brassinosteroid- 
triggered responses (Lin et al. 2013). After brassinosteroid perception, BRI1 phos-
phorylates BIK1 independently of BAK1, and this leads to the release of BIK1 from 
the BRI1 receptor complex (Lin et al. 2013). However antagonism exists between 
the BRI1 and FLS2 pathways, due to the indirect crosstalk by transcriptional regula-
tor BZR1 and not caused by competition between common regulators at the plasma 
membrane (Malinovsky et al. 2014; Lozano-Duran et al. 2013; Albrecht et al. 2012; 
Belkhadir et al. 2012). Different PRRs recruit distinct RLCKs, such as BIK1, PBL1, 
PBL2, and PBL5, and are responsible for FLS2-mediated ROS burst, whereas only 
BKI1 and PBL1 are responsible for ROS burst mediated by PEPR1/2 activation 
(Liu et al. 2013; Zhang et al. 2010). Similarly, BSK1 is responsible for flg22-medi-
ated ROS burst but not for elf18 (Shi et  al. 2013). The involvement of different 
RLCKs for specific PRR responses indicates that the choice of specific RLCKs as 
PRR substrate constitutes another layer in the regulation of signaling, branching 
from PRR complexes. ROS burst and MAPK activation are the indicating responses 
to analyze signaling branching from PRR complexes, as both responses are trace-
able after PAMP treatment (<5  min) and constitute independent signaling (Ranf 
et al. 2011; Segonzac et al. 2011; Xu et al. 2014). The important role of RLCKs is 
in the initiation and specificity of PTI signaling and has initiated the search for dif-
ferent RLCK substrates. Recently NADPH oxidase, AtRBOHD, has been identified 
as direct target for BIK1 as shown in Fig.  4.5 (Kadota et  al. 2014). It has been 
observed that AtRBOHD is the key enzyme responsible for the rapid production of 
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apoplastic ROS upon PAMP perception (Nuhse et al. 2007; Zhang et al. 2007). For 
example, flg22 treatment leads to the activation of BIK1, which directly phosphory-
lates and activates AtRBOHD, leading to the further ROS burst and subsequent 
immunity (Kadota et al. 2014).

Apart from RLCKs, other substrates of PRR complexes have been identified to 
play an important role in PTI signaling. In rice, chitin treatment leads to OsCERK1- 
mediated phosphorylation of the Rac GDP/GTP exchange factor 1 (OsRacGEF1), 
which further activates OsRac1 as shown in Fig. 4.6 (Akamatsu et al. 2013). Therefore 
the activation of the OsCEBiP/OsCERK1 complex and OsRacGEF1/OsRac1 mod-
ule together is essential for chitin-triggered responses and resistance against fungal 
pathogens in rice (Ono et al. 2001; Suharsono et al. 2002; Akamatsu et al. 2013).

4.8.3  Attenuation

Constitutive or hyperactivation of immune responses is always detrimental for plant 
growth. Therefore PRR and their immediate downstream signaling must be tightly 
regulated before and post ligand perception. The exact mechanism for the attenua-
tion of PRR activation is not known exactly. Regulation mechanisms ensure that 
PRR complexes return to their steady state and are ready to get activated in case of 
further pathogen attack. As discussed earlier, phosphorylation is the key for the 
activation of many PRR complexes. Therefore negative regulation of PRR com-
plexes is possible by protein phosphatases. Several phosphatases have been shown 
to have their association with PRR and/or with associated kinases, to keep the com-
plex in inactive form through dephosphorylation in the absence of ligand binding. 
In rice, XA21 is kept inactive before ligand binding through the association with 
ATPase XB24, which promotes XA21 autophosphorylation at specific Ser-Thr 
sites. Binding of Ax21 to XA21 leads to the disassociation of XB24, thus further 
allowing XA21 activation and immune responses. Post activation, a phosphatase 
XB15 known as POL-type protein phosphatase 2C (PP2C) acts on XA21 and 
dephosphorylates it, further leading to its inactivation as shown in Fig. 4.7. Recently, 
novel phosphatases have been identified that regulate pre-ligand and post-ligand 
binding in FLS2/EFR complexes. A key regulatory aspect of surface-associated 
RLKs is their degradation after post-ligand binding and their subsequent replenish-
ment via de novo synthesis at the plasma membrane. It has been reported that post 
flg22 perception, FLS2 is subjected to endocytosis and degradation (Lu et al. 2011; 
Robatzek et al. 2006; Smith et al. 2014). FLS2 degradation is controlled by two 
E3-ubiquitin ligases, PUB12 and PUB13. They exist in a constitutive complex with 
BAK1 and are therefore recruited into the FLS2 complex after flg22 binding takes 
place as shown in Fig. 4.8. It has been observed that phosphorylated PUB12/PUB13 
by BAK1 is responsible for polyubiquitination of FLS2, and this polyubiquitination 
further leads to FLS2 degradation as shown in Fig. 4.8. However the exact role of 
PB12 and PB13 in FLS2 endocytosis is currently unknown. The negative regulation 
mediated by PUB12/PUB13 is highlighted in a study which proved that loss of 
PUB12/PUB13 results in heightened flg22-induced responses and enhanced resis-
tance to PtoDC3000 (Lu et  al. 2011; Robatzek et  al. 2006). Additional PUBs, 
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PUB22/PUB23/PUB24, were also reported as negative regulators of PTI responses, 
and their mechanism of regulation is still not known and therefore kept in separate 
clad forms, PUB12/PUB13 (Trujillo et al. 2008).

Degradation of FLS2, mediated by ligand-induced endocytosis, plays a key role 
to prevent continuous signaling from the activated surface-associated receptors 
(Smith et  al. 2014). De novo synthesized FLS2 are incorporated into the plasma 
membrane to replenish the degraded FLS2, so that it restores the sensitivity of the 
cell for the upcoming pathogen attack (Smith et al. 2014). Hence appropriate PRR 
trafficking, after ligand perception, is essential for specific signal responses. During 
cytokinesis and cell expansion, DENN domain protein SCD1 is responsible for 
clathrin-mediated endocytosis (McMichael et al. 2013). It has been also reported that 
SCD1 also interacts with FLS2 and is essential for flg22-triggered immune responses 
(Korasick et  al. 2010). Studies with chemical inhibitors of vesicular trafficking 
impaired flg22-triggered immune responses, suggesting that there is a potential link 
between endocytosis and flg22-mediated immune responses (Smith et al. 2014).

In Arabidopsis flagellin perception through FLAGELLIN-SENSITIVE 2 (FLS2) 
induces the activation of mitogen-activated protein kinases (MAPKs) and provides 
immunity. The precise molecular mechanism that connects activated FLS2 to 
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downstream MAPK cascades is still under investigation. Recently it has been identi-
fied that differentially phosphorylated MAP kinase also interacts with FLS2 (Mithoe 
et al. 2016). With the help of targeted proteomics and functional analysis, it has been 
observed that phosphorylated MKKK7 on specific serine residues negatively regu-
lates flagellin-triggered signaling and basal immunity. MKKK7 is responsible for the 
attenuation of MPK6 activity and defense gene expression. Moreover, MKKK7 is 
also responsible for the suppression of the reactive oxygen species burst downstream 
of FLS2, indicating that MKKK7-mediated attenuation of FLS2 signaling occurs 
through direct modulation of the FLS2 complex (Mithoe et al. 2016).

In Arabidopsis, RLCKs have also been reported to play a key role in the regula-
tion of plant innate immunity. The PBL13 kinase negatively regulates plant innate 
immunity to pathogenic bacteria Pseudomonas syringae and is also associated with 
RBOHD before pathogen perception (Lin et  al. 2015). Hence these findings are 
consistent with the hypothesis that PBL13 acts to prevent inappropriate activation 
of defense responses in the absence of pathogen challenge. Similarly a recent study 
in rice related to functional characterization of four new rice RLCKs from subfam-
ily VII  – OsRLCK57, OsRLCK107, OsRLCK118, and OsRLCK176 – has been 
done. It has been observed that these OsRLCKs interact with the rice brassino-
steroid receptor, OsBRI1, in yeast cell, but not the XA21 immune receptor. Silencing 
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of these genes decreased XA21 gene expression and compromised XA21-mediated 
immunity to (Xoo). Hence, this study demonstrated that these OsRLCKs negatively 
regulate BR signaling, while positively regulating immune responses by contribut-
ing to the expression of the immune receptor XA21 (Zhou et al. 2016).

4.9  Conclusions

Plant receptors for the bacterial PGN and the proteinaceous PAMP Flg and EF-Tu 
elongation factor and fungal PAMPs have been identified and well-studied; however 
those involved in LPS perception are not studied in details. One of the most com-
plex signaling molecular machineries is the plant PRR immune complex. When 
encountered with danger, the simplest mechanism is an initiation of signal when a 
surface-localized transmembrane receptor is bound to its corresponding ligand. The 
complete mechanism involves co-receptors, regulatory proteins, and substrates that 
link PRR activation and negative regulation. Since phosphorylation is a key event to 
drive the initiation of signaling from PRR, it will be important to decipher whether 
phosphorylation at specific sites is the key for recruitment or dissociation of the 
specific signaling component to the receptor complex or to determine the fate of 
activated PRR. Therefore specific phosphorylated sites would regulate directly or 
indirectly the branching of signaling from PRR complex. The expression pattern of 
different proteins, comprising of PRR complexes at the cell, tissue, or organ level, 
is still unknown. We need to address more PAMP/PRR perception systems to under-
stand how plants integrate the different signals during natural infection. This is par-
ticularly important, as infections are often multi-tropic in nature. While PAMP 
induces overlapping responses, certain PAMP combinations seem to act synergisti-
cally or even antagonistically. Our knowledge of molecular mechanisms involved 
during downstream PRR signaling is very limited. Genetic screening, coupled with 
interaction studies complemented by the addition of more effector targets, is needed 
to fulfill this gap. The understanding of the basis of PRR complex formation, orga-
nization, activation, and subsequent connection of downstream networking leads to 
actual immunity and will be a key challenge for the future. In conclusion we say that 
with the assistance of expanding bioinformatics and molecular biology tools, we 
will be able to identify novel PAMPs, understanding their perception and signaling 
in plants.
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Abstract
The NBS-LRR proteins are encoded by one of the largest and most important 
gene family involved in disease resistance in plants. Many of these NBS-LRR 
proteins recognize effectors secreted by pathogens directly or indirectly that in 
turn activate downstream signaling pathways leading to activation of plant 
defense response against various classes of pathogens including bacterial, fun-
gal,  viral, nematode and insect. Defense response by NBS-LRR protein is a 
sophisticated strategy that induces effector-triggered immunity (ETI). The NBS- 
LRR proteins comprised of amino-terminal variable domain, a central nucleotide- 
binding site (NBS) and carboxy-terminal leucine-rich repeats (LRR) domain. The 
NBS domain binds and hydrolyzes ATP and primarily functions as a signal trans-
duction switch following pathogen recognition. LRRs are highly adaptable struc-
tural domains that are involved in protein-protein interactions, and these LRRs 
can also evolve very different binding specificities. In the following chapter we 
have discussed in detail about the present knowledge pertaining to NBS-LRR 
class of proteins and their prospect in crop improvement against diseases.
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5.1  Introduction

Plants are continuously attacked by a plethora of pathogens. To counter pathogen 
attack, plants have evolved an immune system, and the major part of this system is 
contributed by specificity determinants, which are the resistance (R) genes. R genes 
are set of genes that confer resistance to a wide variety of pathogens including bac-
teria, fungi, oomycetes, nematodes, and insects. Nucleotide-binding site-leucine- rich 
repeat (NBS-LRR) genes comprise the largest class in the category of all known R 
genes which encompasses more than 80% of characterized R genes (McHale et al. 
2006; Meyers et al. 1999, 2003, 2005; Friedman and Baker 2007; Zhang et al. 2016; 
Song et al. 2017). The name NBS-LRR has been assigned due to a central nucleo-
tide-binding domain, which is also known as the NB-ARC {nucleotide- binding 
adaptor shared by apoptotic protease activating factor 1 (APAF1), certain R genes 
and cell death protein 4 (CED4)} domain, and their C-terminal leucine-rich repeat 
(LRR) domain. NBS-LRR proteins form a subclass of the signal transduction 
ATPases with numerous domains (STAND) super family, a class of molecular 
switches that are involved in a variety of mechanisms, including immunity, apoptosis 
(e.g., APAF1 and CED4), and transcriptional regulation (Takken and Goverse 2012).

Plant NBS-LRR proteins show sequence resemblance with the members of the 
mammalian nucleotide-binding oligomerization domain (NOD)-LRR protein 
family{also called caspase recruitment domains (CARD), R (purine)-binding, tran-
scription enhancer, pyrin, lots of leucine repeats (CATERPILLER) proteins}, which 
play crucial role in inflammatory and immune responses (Inohara et al. 2005; McHale 
et al. 2006). Evolutionary studies based on phylogeny to understand the origin and 
similarities between plant NBS-LRR and mammalian NOD proteins are inconclusive 
till date. Though a plain, convergent evolutionary origin was proposed initially (Ausubel 
2005; McHale et al. 2006), the most recent study suggests that the plant NBS-LRR and 
mammalian NOD proteins may be a result of independent evolutionary events that 
occurred at least twice (Urbach and Ausubel 2017). Whether these events are due to 
horizontal gene transfer or due to some other mechanism, is yet to be determined.

NBS-LRR genes have been grouped into two classes, namely, TIR-NBS-LRR 
(TNL) and the non-TIR-NBS-LRR (nTNL). The last residue, D (aspartate) or W 
(tryptophan), of the conserved kinase-2 motif within the NBS domain helps in distin-
guishing TNL from nTNL by 95% accuracy (Meyers et al. 1999; Wan et al. 2012). 
Former class is different from the latter as the former class comprises a toll/interleu-
kin-1 receptor-like (TIR) domain at the protein amino terminus (Bai et  al. 2002; 
Meyers et al. 1999; Zhou et al. 2004; Zhang et al. 2016). In contrast, at the N-terminus, 
most nTNL genes encode a CC domain, and these nTNL genes are often called as 
CC-NBS-LRR (CNL) genes (Ameline et al. 2008; Meyers et al. 2003). Apart from 
CNL genes, a small group of nTNL genes that possesses a special N-terminal domain 
known as resistance to powdery mildew 8 (RPW8) domain has recently been discov-
ered. RPW8 domain containing nTNL genes represents distinct class of NBS-LRR 
genes (RPW8-NBS-LRR, RNL) (Bonardi et al. 2011; Collier et al. 2011; Cannon 
et al. 2004; Shao et al. 2014; Xiao et al. 2001; Zhang et al. 2016).

Commonly, NBS-LRRs are intracellular multidomain proteins that recognize 
pathogen-derived effectors either directly or indirectly (Cesari et al. 2014; Dodds and 
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Rathjen 2010; Jones and Dangl 2006; Van der Hoorna and Kamoun 2008; Shao et al. 
2016; Song et  al. 2017). As per direct model, an NBS-LRR protein binds to the 
pathogen effector and serves as a substrate for the effector’s enzymatic activity (Shao 
et al. 2016). According to indirect model, NBS-LRR recognizes the modifications of 
additional host protein(s). Further these modifications in the additional host proteins 
are targeted by the effector (Shao et al. 2016). Ultimately, the aim of NBS- LRR pro-
teins is to sense and detect the respective pathogen effectors and virulence factors. 
This recognition leads to the activation of downstream signaling pathway, which 
results in various immune responses like hypersensitive response at the site of patho-
gen infection which provides immunity to the host plant (Bittle and Robatzek 2007).

5.2  Susceptibility and Resistance in Plants

Different pathogens such as viruses, bacteria, fungi, and nematodes are responsible to 
cause many destructive diseases in plants. As the diseases progress, visible symptoms 
can be seen, and in some cases severe infections can lead to the death of the plants. 
Often these symptoms include yellowing of leaves and stunted growth of plant, fol-
lowed by necrosis at the infection site ultimately leading to cell death. To acquire resis-
tance, plants need to suppress pathogen growth and replication at the site of infection.

Plant resistance in response to pathogen attack is associated with the rapid burst 
of reactive oxygen species (ROS), followed by a localized programmed cell death 
(PCD) called hypersensitive response (HR) at the infection sites, and increased 
expression of pathogenesis-related (PR) genes (Chisholm et  al. 2006; Gururani 
et  al. 2012; Hammond–Kosack and Jones 1996; Heath 2000; Morel and Dangl 
1997; Shao et al. 2016; Takahashi et al. 2003). Other resistance responses include 
(but are not limited to) the activation of defense gene expression, induced biosyn-
thesis, and accumulation of salicylic acid (SA) and jasmonic acid (JA) (Creelman 
and Mullet 1995). Hypersensitive response is an especially effective process in lim-
iting pathogens (biotrophs) that require living host cells. Often HR is triggered 
when an appropriate R gene recognizes an effector or a pathogen elicitor gets rec-
ognized by suitable receptor (Minsavage et al. 1990; Nürnberger et al. 1994). The 
NBS-LRR class of protein play a very important role in both cases as major portion 
of R genes and immune receptors discovered till date belongs to NBS-LRR and 
LRR kinase (LRK) class of proteins in plant cell. A well-characterized example of 
HR mechanism through gene-for-gene interaction is provided by the tomato 
(Solanum lycopersicon) Cf-9 gene, which confers resistance to races of the fungus 
Cladosporium fulvum expressing the Avr9 gene (Van Kan and De Wit 1992).

5.3  NBS-LRR Gene-Mediated Resistance to Pathogens 
in Crop Plants

NBS-LRR gene-mediated resistance has several striking features for disease con-
trol. When the resistance is induced in a timely manner, then the signaling cascade 
can effectively halt pathogen growth with minimal collateral damage to the plant 
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(McDowell and Woffenden 2003). Most of the NBS-LRR genes exhibit high recog-
nition specificity with elicitors. Specific amino acid changes in the NBS or ARC2 
domain of various NBS-LRR R genes such as tomato I-2, potato Rx, and flax L6 
result in autoactivation and Avr-independent defense signaling (Tameling et  al. 
2006). Alternatively, a random in vitro mutagenesis of the domains in the R gene 
sequence can also result in pathogen recognition and subsequent recognition speci-
ficities of the selected gene variants. A subset of the mutant Rx gene sequences in 
potato was shown to confer resistance against the original viral strain as well as 
additional potato virus X strains and a second distantly related virus species 
(Farnham and Baulcombe 2006).

5.3.1  NBS-LRR Gene Family in Plant Genomes

Recent advancement in sequencing technologies holds the capacity to provide 
sequence information at a very high-throughput scale (Solexa, Roche; Illumina, 
single-molecule real-time sequencing). These technologies have opened new vistas 
to assess plant-microbe interactions. Their uses enable genome-wide analyses of 
NBS-LRR genes, and this analysis is based on the NB-ARC domain (Meyers et al. 
2005). On the basis of the sequenced genomes of various plant species, hundreds of 
NBS-LRR genes have been identified (McHale et al. 2006). Arabidopsis thaliana, 
the first sequenced plant species, has 165 NBS-LRR genes including 52 CNLs, 106 
TNLs, and 7 RNLs (Zhang et al. 2016). Plants that belong to Solanaceae family like 
Solanum tuberosum (potato) and Solanum lycopersicum (tomato) have more than 
twice the number of NBS-LRR genes than Arabidopsis, and plants of Solanaceae 
family possess more CNLs than TNLs (Consortium TG 2012; Guo et al. 2011; Kim 
et al. 2014; Jupe et al. 2012). It is considered that TNLs have evolved after the diver-
gence of monocots and dicots (Goff et al. 2002; McHale et al. 2006; Meyers et al. 
2003). The NBS-LRR class of R genes fit into rapidly evolving gene family, and the 
number of NBS-LRR genes differs among plant species (Clark et al. 2007; Rafiqi 
et  al. 2009). For illustration, 198 NBS-LRR genes (138 CNLs, 55 TNLs, and 5 
RNLs) were acknowledged in Arabidopsis lyrata. At the genus level, more differ-
ences in R gene composition have been observed. In recent times, identification of 
novel NBS-LRR genes has been possible with the help of R gene enrichment and 
sequencing (RenSeq) method (Andolfo et al. 2014; Jupe et al. 2013). Overexpression 
of these genes showed various phenotypes associated with basal defense response 
such as elevated SA level; therefore, the role of NBS-LRR proteins in basal defense 
has also been well characterized (Nandety et al. 2013). In this direction, genome-
wide analysis of NBS-LRR genes may expand the scope to understand the role of 
these genes in plant disease resistance.

On the basis of the N-terminus, NBS-LRR proteins have been classified into two 
categories in plants which are TIR-NBS-LRR (TNL) and the non-TIR-NBS-LRR 
(nTNL). This classification is, however, not always precise. nTNL proteins com-
prise those NBS-LRR proteins which possess other domain at their N-terminus 
rather than TIR domain. NBS-LRR genes usually contain additional domains such 
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as CC or RPW8 at the N-terminus and an unpredictable number of LRR domains at 
the carboxy-terminus (Shao et al. 2014; Zhang et al. 2016).

The functionality of NBS-LRR proteins is dependent on below described 
domains:

5.3.1.1  TIR Domain
TIR is most common domain in the group of NBS-LRR proteins (Zhang et  al. 
2016). Many factors which interact with animal TLRs (toll-like receptors) also pos-
sess TIR domain, for example, MyD88. During these interactions, TIR domains 
interact physically (Riedl et al. 2005). Thus TIR domains facilitate heterodimeriza-
tion in plants like that of some animal TLR receptors (Nandety et al. 2013; Williams 
et al. 2014). In plants, TIR domain participates in the detection of Avr proteins, e.g., 
interaction between the TIR domain of tobacco N protein and the tobacco mosaic 
virus (TMV) p50 protein. This interaction leads to hypersensitive response (HR). 
Noticeably, NRIP1 (the additional host protein) is requisite for this interaction 
(Nandety et al. 2013). Recent studies suggest the role of TIR domain in pathogen 
recognition and in signaling cascade (Williams et al. 2014). However, TIR domain 
is notably absent from most monocotyledons (Tarr and Alexander 2009).

5.3.1.2  CC Domain
The coiled-coil (CC) domain usually ascribed a role analogous to the TIR domain 
as it acts as a mediator in interactions with other essentials of the signaling cascade. 
It has been observed that the EDVID motif is conservative motif in the coiled-coil 
domain of all CC-NBS-LRR proteins (Collier and Moffett 2009) but exceptions are 
also present in case of RPS2, RPS5, and Dm3 proteins. Mutations in this motif 
cause turbulence in the intramolecular interaction in between NBS and LRR 
domains; as a result decreased resistance response against pathogen attack has been 
observed (Zhang et al. 2016).

The CC structure is made up of two or more α-helices with a super helical twist. 
It represents heptad repeat sequence (abcdefg) n where ‘a’ and‘d’ are hydrobhobic 
amino acid residues, while the ‘e’ and ‘g’ represent polar amino acid residues. The 
CC structure is the most common in NBS-LRR proteins present in both monocots 
and dicots. It has been studied that CC domain alone is able to induce cell death, for 
instances, the Arabidopsis RPS5, RPS2, RPM1 and activated disease resistance 1 
(ADR1); Nicotiana benthamiana N requirement gene 1 (NRG1); and barley mildew- 
resistance locus A 10 (MLA10) genes (Jacob et al. 2013). But in contrast, central 
NBS domain of potato Rx protein is sufficient to trigger cell death (Moffett et al. 
2002).

R proteins have also been known to contain a CC domain which binds to target 
proteins of pathogen effectors, e.g., the CC domain of A. thaliana RPS5 protein 
interacts with PBS1, which is a target of Pseudomonas syringae AvrPhB effector 
(Ade et al. 2007).
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5.3.1.3  RPW8 Domain
Apart from CNL genes, a small group of nTNL genes that possess a special 
N-terminal domain known as RPW8 (resistance to powdery mildew8) domain has 
recently been discovered. RPW8 domain containing nTNL genes which represent a 
distinct class of NBS-LRR genes, i.e., RPW8-NBS-LRR, RNL (Bonardi et al. 2011; 
Cannon et al. 2004; Collier et al. 2011; Shao et al. 2014; Xiao et al. 2001; Zhang 
et al. 2016). Species-specific duplication studies on five Rosaceae species, namely, 
Malus domestica (apple), Fragaria vesca (strawberry), Pyrus bretschneideri (pear), 
Prunus mume (mei), and Prunus persica (peach), clearly described RNL as a dis-
tinct class of NBS-LRR genes (Zhong et al. 2015).

5.3.1.4  NBS Domain
The NBS domain was identified in NBS-LRR proteins, and it shows similarity to the 
homologous sequences in the animal APAF-1 and CED-4 proteins (Van der Biezen 
and Jones 1998). NTPase activity is a characterizing feature of NBS domain. This 
domain is suggested to play a crucial role as a molecular switch in activating signal 
transduction. In the signaling cascade, reversible nucleotide binding leads to changes 
in the conformation of the NBS domain. The conformational changes in NBS domain 
lead to the activation/deactivation of the whole receptor (Tameling et al. 2006).

After human APAF-1 studies, it has become possible to speculate about the 
structure and function of the NBS domain in plants. Four subdomains, NB, ARC1, 
ARC2 and ARC-3, are found in NBS domain of the human APAF-1 protein 
(Fig. 5.1) (Riedl et al. 2005). ARC3 domain is absent in the plant R proteins; never-
thless a short linker connecting ARC2 with LRR is found in the plant R proteins. 
ARC1 is made up of a bunch of α-helices and ARC2 of α-helices rolled up in a 
winged helix fold. The spatial structure of the NBS domain differs, and it depends 
on whether it is combined with ATP or ADP (Tameling et al. 2002). Many conserva-
tive motifs such as the P-loop (Walker A or kinase 1), the RNBS-A, kinase 2 (Walker 
B), kinase-3a, RNBS-B, RNBS-C, GLPL, and RNBS-D have been identified in this 
domain (Wan et al. 2012). P-loop, kinase-3a, kinase 2, and GLPL conserved motifs 
are common in both TNLs and nTNLs subfamilies (Wan et al. 2012).

NBS domain has the capability to bind and hydrolyse ATP, and thus it confers 
switching of R protein from active to inactive state (Riedl et al. 2005). Mutations in 
the NBS domain are attributed to the autoactivation of resistance response in the 
absence of an elicitor, and this is characterized by an increased susceptibility to 
pathogen. Constitutive active resistance response is because of disturbance in ATP 
hydrolysis. Therefore, the binding with ATP rather than ADP seems necessary to 

Fig. 5.1 Subdomains of NBS domain, showing comparison in between plants and animals
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activate a receptor. It has been proven that the autoactivation mechanism of NBS- 
LRR protein is generally associated with the mutations in the NB and ARC2 subdo-
mains (Takken et  al. 2006). In spite of this, the ARC1 subdomain seems to be 
involved in binding to LRR domain; this has been proven after the evolution of loss 
of functional mutants. However, low stability of ARC1 domain is suggested for the 
cooperation of some additional factors which are necessary in the signaling cascade 
(Rairdan and Moffett 2006).

5.3.1.5  LRR Domain
The C-terminus of NBS-LRR protein is occupied by LRR domain. Tandem repeat 
of 20–30 amino acids containing a consensus sequence LxxLxLxxNxL is the essen-
tial structural element of LRR domain. In consensus sequence LxxLxLxxNxL, L is 
a leucine residue, N is asparagine/threonin/serine or cystein, and x is any amino acid 
(Bella et al. 2008; Kajava 1998; Matsushima et al. 2007; Stange et al. 2008). NBS- 
LRR protein with an LRR domain has to contain at least two LRR repeats. 
Horseshoe-shaped superhelix is the usual tertiary structure of LRR domain. Each 
repeat of amino acid forms other coils of the horseshoe-shaped super helix. It is 
proposed that the LRR domains constitute a platform for protein-protein interac-
tions (Bella et al. 2008; Kobe and Kajava 2000). The tertiary structure of LRR usu-
ally has an inner surface composed of parallel β-strands. These parallel β-strands are 
composed of hydrophobic aliphatic residues of a consensus sequence and are 
assumed to be a site of interaction with other proteins, which in case of plant NBS- 
LRR proteins provides a crucial condition for the recognition of specific elicitors.

The outer part of the LRR domain is usually composed of α-helices which are 
connected with β-strands by β-turns (Bella et  al. 2008). Consensus sequence 
LxxLxLxxNxL participates in interactions with microbe-associated molecular pat-
terns (MAMPs) or microbe-induced molecular patterns (MIMPs), and this has been 
proven by the differences in the specificity of flax rust (Melampsora lini) effector 
recognition by the P and P2 genes of flax (Linum usitatissimum).

After binding with a proper MIMP or MAMP, conformational changes within 
the LRR domain occur that lead to the dissociation of the LRR domain from the 
NBS domain (Wang et al. 2007). It is suggested that the dissociation of the LRR and 
NBS domains from NBS-LRR protein might not be required for the activation of the 
receptor (Rairdan and Moffett 2006; Van Ooijen et al. 2008). In contrast, rhythmic 
rounds of dissociation and reassociation could lead to the amplification of the signal 
originating from elicitor recognition (Rairdan and Moffett 2006).

5.3.1.6  Other Domains in NBS-LRR Protein
Despite the domains listed above, some additional domains are located at the 
N-terminus and more rarely at the C-terminus in many of the NBS-LRR proteins. 
One of the examples for such proteins is Arabidopsis RRS-1R that have WRKY 
domain at their N/C-terminal. In this protein plant WRKY transcription factors have 
been identified by the presence of WRKYGQK conserved motif situated at the 
N-terminus of the NBS-LRR protein. This WRKY transcription factor also has a 
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typical domain similar to Zn (Zinc) finger motif and plays an essential role in regu-
lating the expression of genes that are involved in plant resistance (Eulgem and 
Somssich 2007; Ulker and Somssich 2004).

In many instances, WRKY transcription factors are directly affected by some 
NBS-LRR proteins. Alleles of barley MLA proteins detect the related Avr proteins 
of Blumeria graminis and then disengage HvWRKY1/2 transcription factor, which 
has been found to repress resistance genes (Liu and Coaker 2008). It has been 
observed that some NBS-LRR proteins also contain a domain having similar struc-
ture as that of a WRKY transcription factor; thus, it became feasible to affect gene 
expression directly. An instance of such protein is the RRS-1R receptor of A. thali-
ana which is one of the TIR-NBS-LRR proteins. RRS-1R receptor possesses a 
C-terminal WRKY domain and recognizes the PopP2 effector of Ralstonia sola-
nacearum (Deslandes et al. 2002). WRKY domain may act as a suppressor of sig-
naling cascade responsible for bringing resistance against a pathogen (Noutoshi 
et al. 2005); this has been proven by the analysis of Arabidopsis thaliana mutants, 
known as SLH1. These mutants possess alteration in single amino acid in the 
WRKY domain of the TIR-NBS-LRR-WRKY protein (Noutoshi et al. 2005).

5.4  Intramolecular Interactions

Structural analyses of plant NBS-LRR are dependent on domain-swapping experi-
ments, mutant analysis, and 3D modeling of NBS-LRR protein. Overall, it seems 
that plant NBS-LRR proteins have complex interactions among their domains; how-
ever, the function of those interactions in pathogen detection and activation of signal 
transductions seems to vary with some degree among plant NBS-LRR proteins. The 
first evidence for intramolecular interaction of plant NBS-LRR protein domains 
came after the work on Rx and Bs2 R proteins from pepper (Leister et al. 2005; 
Moffett et al. 2002). It has been known that plant NBS-LRR proteins have complex 
interactions among their domains; however, the role of intramolecular interactions 
in pathogen detection and activation of signal transductions seems to vary with 
some degree among plant NBS-LRR proteins. Co-immunoprecipitation experi-
ments in Rx demonstrate physical interactions between the CC and NBS-LRR 
domains and between the CC-NBS and LRR domains.

It is considered that interaction of Rx domains with domains from the closely 
related NBS-LRR proteins Bs2 and HRT (an Arabidopsis R protein that confers 
resistance to turnip crinkle virus) has also been detected, suggesting some degree of 
‘promiscuity’; however, such physical interactions are not sufficient to reconstitute 
functional signaling molecules (Rairdan and Moffett 2006). Further, the intramo-
lecular interactions of RPS5 have been studied, and it was found that the intramo-
lecular interactions of RPS5 are similar but not identical to those reported for Rx 
and Bs2. Co-immunoprecipitation experiments have revealed that the CC and LRR 
domains individually interact with the NBS domain, but not with each other (Moffett 
et al. 2002).
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5.5  NBS-LRR Formation of Oligomers

Several plant NBS-LRR proteins are known to form oligomers; however, the func-
tion of the NBS domain in that oligomerization is yet to be resolved. For example, 
several domains of Rx are able to interact when expressed in trans, as are domains 
of Bs2, although it has been found that some of those interactions are ‘preferen-
tially’ intramolecular (Leister et al. 2005; Moffett et al. 2002). Oligomer formation 
of full-length Rx in the absence of pathogen effector has not been detected, and thus 
the direct interaction of NBS domains has not yet been detected for these proteins 
(Moffett et al. 2002). It has also been observed that in the presence of pathogen 
effector, NBS-LRR proteins form oligomers but the TIR domain is the only domain 
directly associated with that oligomerization, e.g., in N protein of tobacco (Mestre 
and Baulcombe 2006). But later on, it has been observed that in case of RPS5, the 
amino-terminal CC domain of RPS5 also forms oligomers. It suggests that in case 
of plant NBS-LRR proteins, the amino-terminal domain may be involved in the 
formation of oligomers, which differs from APAF1 and CED-4. Finally, study on 
tobacco N protein has revealed that the formation of oligomers is necessary but not 
sufficient for disease resistance. In addition, formation of oligomers is an early 
event in pathogen detection because downstream signal transduction mutants do not 
affect the formation of oligomers (Mestre and Baulcombe 2006).

5.6  Major Classes of R Proteins Containing at Least One NBS 
and/or LRR Domain

Plant resistance genes can be classified into nine groups. This classification is based 
on the organization of their amino acid motif and their membrane spanning domains 
(Fig. 5.2 and Table 5.1). In the majority of R proteins, LRR domain is present, and 
it plays important role in recognition specificity (Gururani et al. 2012; Jones 2001).

Class-I: CC-NBS-LRR genes are the first major class of R-genes. Proteins encoded 
by NBS-LRR genes are found in cytoplasm. First NBS-LRR protein encoded by 
NBS-LRR gene was discovered as a cytoplasmic protein. It possesses a putative 
CC at the N-terminus, a NBS, and a C-terminal LRR. RPM1 resistance gene of 
Arabidopsis is the example of the first major class of R-genes (I-2).

Class-II: The second class of resistance genes includes the cytoplasmic proteins 
which possess N-terminal TIR domain, a NBS motif, and C-terminal LRR 
domain. The tobacco N gene, RPP5 gene, and flax L6 gene are the examples of 
the second class of R-genes (Gururani et al. 2012; Lawrence et al. 1995).

Class-III: The third class of R-genes lacks NBS motif and consists of extra cyto-
plasmic leucine-rich repeats (eLRR). This eLRR is attached to a transmembrane 
domain (TrD). eLRRs are supposed to play main role for certain defense proteins 
like polygalacturonase-inhibiting proteins PGIPs (Gururani et  al. 2012; Jones 
and Jones 1997), but still no direct role of eLRRs in pathogen recognition and in 
activation of defense genes have been observed (Gururani et  al. 2012; Jones 
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2001). The Cladosporium fulvum resistance genes (Cf-9, Cf-4, and Cf-2) are the 
examples of this class.

Class-IV: The fourth major class of the resistance genes have an LRR extracellular 
domain, a transmembrane domain (TrD), and an intracellular KIN (serine- 
threonine kinase) domain (Gururani et al. 2012; Song et al. 1995). Xa21 gene of 
rice which shows resistance against Xanthomonas is an example of this class.

Class-V: The fifth class encoding resistance genes contain the extracellular LRRs 
(putative), a Pro-Glu-Ser-Thr (PEST) domain, and an ECS (short proteins 
motifs). The PEST domain is involved in protein degradation, and it is found 
only in tomato Ve2, not in tomato Ve1. The ECS is supposed to target protein for 
receptor-mediated endocytosis.

Fig. 5.2 Major classes of plant NBS-LRR genes with important domains: LRR leucine-rich 
repeats, NBS nucleotide-binding site, ECS endocytosis cell signaling domain, TIR toll/interleukin- 
1- receptors, CC coiled coil, TrD transmembrane domain, PEST amino acid domain, NLS nuclear 
localization signal, WRKY amino acid domain
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Class-VI: Arabidopsis RRS1-R gene is an example of the seventh major class of 
R-genes. RRS1-R gene confers defense against bacterial phytopathogen Ralstonia 
solanacearum. Recently, RRS1-R gene has been included as a new member of 
the TIR-NBS-LRR class. TIR-NBS-LRR falls in R-protein class. RRS1-R has a 
C-terminal extension, along with a putative NLS (nuclear localization signal) 
and a WRKY domain (Deslandes et al. 2002, 2003). The WRKY domain com-
prises a 60 amino acid region.

Class-VII: The ninth class of R-genes contains RPW8 domain at the N-terminus, 
along with a NBS and LRR domain. Arabidopsis RPW8.1 and RPW8.2 genes are 
the examples of this class (Xiao et al. 2005).

Class VIII: This class of NBS-LRR genes contains a BED finger domain at their 
N-terminus (Kohler et al. 2007). This domain consists of about 50–60 amino acid 
residues which possess a shared pattern of cysteine and histidine amino acid resi-
dues which form a zinc-finger DNA-binding domain. This BED domain is pres-
ent in rice Xa1 gene and poplar’s poptr_1:787192 (Bai et al. 2002; Kohler et al. 
2008).

Class IX: Another class of NBS-LRR genes has been predicted through genome- 
wide study of NBS-LRR in Populus trichocarpa (Kohler et al. 2008). This class 
contains both TIR and CC domains at the N-terminus and was termed as TCNL 
(TIR-CC-NBS-LRR). Perhaps this may have emerged by gene recombination 
events as they contain both TIR and CC domains.

5.7  Instance of Plant NBS-LRR Genes Conferring Defense 
Against a Wide Range of Pathogens

Many plant R genes, which have been studied till now, confer resistance against a 
plethora of pathogens and for bulk of plant diseases; the genetics of susceptibility 
are less corporeal. Some of the examples of the plant NBS-LRR gene which confer 
resistance against pathogen attack have been discussed below.

5.7.1  Plant NBS-LRR Genes Conferring Resistance 
Against Bacterial Pathogens

It has been identified that both plant and animal bacterial pathogens transport viru-
lence proteins into the host cytoplasm by means of the type-III secretion system 
(T3SS). T3SS is also known as injectisome (Gururani et  al. 2012). This system 
enables Gram-negative bacteria to secrete and instill pathogenicity proteins into the 
cytosol of host cells (Galan and Collmer 1999). HR and pathogenicity (hrp) and HR 
and Conserved (hrc) genes encode T3SS. Mutations in hrp and hrc eliminate bacte-
rial pathogenicity in susceptible host plants and the ability to bring out HR in non- 
host/cultivar-specific resistant plants. In rice, susceptible and resistant alleles of 
Xa27 encode identical proteins. However, R allele expresses only when a rice plant 
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faces bacterial AvrXa27 and the product of AvrXa27 is a nuclear localized T3SS 
effector. Xa27 express only in the environs of infected tissue; however Os8N3 
(dominant rice gene) is an exception. It is upregulated by a bacterial type-III effec-
tor protein; thus it bestows gene-for-gene-specified disease susceptibility (Kaloshian 
2004). Some plant R genes may confer resistance against unrelated or distantly 
related bacterial pathogens (Zhao et al. 2005) and demonstrate the transport feasi-
bility of non-host R gene in between maize and rice. It was proposed that maize 
Rxo1 detects Xanthomonas oryzae pv. oryzicola, and thus Xanthomonas oryzae is 
able to cause bacterial streak disease. In contrast, Rxo1 has also been found to con-
fer resistance to the distinct pathogen Burkholderia andropogonis (causes bacterial 
stripe of sorghum and maize).This study indicates that the same gene may control 
resistance toward both pathogens and nonpathogens of maize. This gives an idea 
that an NBS-LRR gene could be transferred between distinctly related cereals.

5.7.2  Plant NBS-LRR Genes Conferring Resistance 
Against Fungal Pathogens

Diseases which are caused by fungus contribute most devastatingly toward crop 
yield loses in approximately all major crops (Wani 2010). It has been studied that 
the variation in sequence and copy number within the central LRR domain of the 
gene plays an important role in identifying recognition specificity (Brande et  al. 
2001). For instance, sequence alterations in tomato Cf-4 and Cf-9 genes play a key 
role in determination of recognition specificity. These genes confer resistance in 
tomato plants against Cladosporium (biotrophic leaf mold pathogen). HR is trig-
gered upon detection of the fungus-encoded Avr4 and Avr9 peptides (Brande et al. 
2001). Recently, a virus-induced gene silencing method for the validation of Ve- 
mediated signaling exposed that downstream signaling cascade of Ve1 needs EDS1 
(enhanced disease susceptibility 1) and NDR1 (non-race-specific disease resistance 
1) gene. Another example of fungal R genes is the RPW8.2 (Arabidopsis thaliana 
gene) which is induced by powdery mildew (Wang et al. 2009). It might also have 
been involved in reducing and enhancing of oxidative damage to the host cell and 
callosic encasement of the haustorial complex (EHC) formation, respectively. 
Marking of RPW8.2 to the extra haustorial membrane (EHM) needs normal func-
tioning of the actin cytoskeleton.

5.7.3  Plant NBS-LRR Genes Conferring Resistance 
Against Oomycetes Pathogens

Many diseases like sudden oak death and late blight of potato are caused by phyto-
pathogenic oomycetes. Cloning and functional analyses of four Rpi genes, Rpi- 
blb3, R2, Rpi-abpt, and R2-like, revealed that these genes contain all signature 
sequence characteristics of LZNBS-LRR (leucine zipper nucleotide-binding site- 
leucine- rich repeat). Also, several functional R genes which confer resistance to late 
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blight have been cloned, and it has been observed that all of them belong to the 
NBS-LRR class of plant R genes (Bendahmane et al. 2000; Van der Vossen et al. 
2003). Another instance of oomycetes R genes with NBS-LRR domain is Dm3 
(downy mildew-resistance gene) (Shen et al. 2002). Dm3 is present in Bremia lactu-
cae and belongs to the large RGC2 (resistance gene candidate2) multigene family 
(McHale et al. 2006).

5.7.4  Plant NBS-LRR Genes Conferring Resistance 
Against Nematode Pathogens

Plant parasitic nematodes acquire nutrition from the cytoplasm of living cells. 
Basically, these are obligate parasites, and many ectoparasites and endoparasites 
come under the category of nematodes. Defense mechanism in plants against root- 
knot nematode was identified for the first time in Lycopersicum peruvianum Mill. 
(Watts 1947). Lycopersicum peruvianum Mill. is a wild variety of cultivated tomato 
(Watts 1947). Tomato Mi gene confers resistance to three root-knot nematodes that 
are Meloidogyne arenaria, Meloidogyne incognita, and Meloidogyne javanica 
(Gilbert and McGuire 1956). Mi gene-encoded protein having CC-NBS-LRR 
domains was transferred into cultivated variety of tomato. Positional cloning 
approach was used to isolate Mi gene. The defense mechanism triggered by Mi gene 
involves a HR response in the host (Dropkin 1969). Tomato Mi gene is the cloned 
root-knot nematode defense gene (Williamson and Kumar 2006). Mi gene partici-
pates in the resistance mechanism by following a gene-for-gene model. Similarly, 
the potato Gpa2 gene shows resistance against Globodera pallida (potato cyst nem-
atode). Gpa2 gene is a member of the NBS-LRR gene family, and it also possesses 
a leucine zipper near its N-terminus. This Gpa2 gene shows similarities to the Rx1 
gene in amino acid sequence. Studies indicate that Rx1 gene confers defense in 
potato against potato virus X (Van der Voort et al. 1999).

5.7.5  Plant NBS-LRR Genes Conferring Resistance Against Viral 
Pathogens

Major characterized viral R genes from plants fall into the NBS-LRR class of R 
genes. For instance, resistance in tomato against TSWV (tomato spotted wilt virus) 
is associated with Sw-5 gene. It has been studied that Sw-5 gene is involved in broad 
and stable resistance (Rosello et al. 1998). Sw-5 locus resistance allele encodes a 
CC-NBS-LRR resistance protein, and it has been studied that Sw-5 protein is simi-
lar to the Mi protein of tomato with the exception of 4 LZs at the amino terminus 
(Brommonschenkel et al. 2000). Another example is RT4-4 gene which belongs to 
TIR-NBS-LRR class of NBS-LRR R gene and is generally involved in resistance 
response in common bean (Phaseolus vulgari cv. Othello) against viral attack (Seo 
et al. 2006). It functions across two plant families, which are Cucurbitaceae and 
Solanaceae.
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5.7.6  Plant NBS-LRR Genes Conferring Resistance Against Insect

Resistance against insects has been studied since long in plants (Bent 1996; 
Dempsey et al. 1998; Panda and Khush 1995; Quisenberry and Clement 2002), and 
a number of single dominant resistance genes have been mapped (Venter and Botha 
2000; Yencho et al. 2000). In staple crops such as wheat and rice, most of these 
mapped genes have been characterized.

To date, only some of the insect R genes belonging to NBS-LRR group of resis-
tance genes were cloned. For instance, Mi-1 confers defense to potato aphid 
(Macrosiphum euphorbiae) and whitefly (Bemisia tabaci). Lettuce Nr-gene confers 
resistance against only one single species of aphid (Nasonovia ribisnigri) (Reinink 
and Dieleman 1989). Other examples include apple Sd1 gene, which shows resis-
tance against Dysaphis devecta (rosy leaf curling aphid) and melon Vat gene which 
confers resistance against the cotton/melon aphid Aphis gossypii (Kaloshian 2004).

5.8  Sensing of Effector Protein by NBS-LRR Protein

It is well known that all LRR domains perform the same kind of functions. They 
sustain an NBS-LRR protein in an auto-inhibited state when pathogen is absent in 
host cell and this domain also confers specificity in pathogen recognition. The 
amino-terminal half of the LRR is supposed to act in intramolecular signal trans-
duction, and the carboxy-terminal half plays a role in pathogen detection. The struc-
tural support for the function of LRR domain came from elucidation of the tertiary 
structure of the LRR domain of wild emmer wheat (Triticum dicoccoides) Lr10 
gene (Sela et al. 2012). In number of NBS-LRR proteins, such as L, Mla, and Rx, 
LRR domains possess a large number of hyper variable amino acid residues and 
plays a major role in pathogen recognition (Dodds et  al. 2006; Seeholzer et  al. 
2010). Studies on domain swapping and individual mutations indicate that pathogen 
recognition specificity resides partly in the C-terminal of the LRR domain 
(Bendahmane et al. 2000; Sela et al. 2012).

5.9  Activation

Pathogen presence is perceived by the LRR; thus intramolecular signal is expanded 
to the remainder of the protein. In the resting state, the LRR and TIR-CC domain of 
NBS-LRR protein interact with the NB-ARC domain. These domains together form 
a closed conformation. It has been proven through biochemical studies carried out 
in tomato I-2, flax M, Mi-1, and L6 and barley MLA27. In auto-inhibited state, ADP 
binds the NB-ARC domain, or ADP bounded form on NB-ARC domain is an auto- 
inhibited state (Tameling et al. 2002; Williams et al. 2014). The crystal structure 
studies of CED4 show that in open configuration the NB-ARC domain binds to 
ATP. In activated state, LRR is suggested to trigger a conformational change in the 
NB-ARC domain. This conformational change allows exchange of ADP for ATP 
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and helps in adopting more open conformation. Constitutive expression of NBS- 
LRR genes has been observed during disturbance in ATP hydrolysis activity. It has 
been proven by the studies on I-2 mutants. Additional evidence comes from studies 
on flax rust NBS-LRR protein M. The wildtype M protein co-purified with ADP and 
an auto-active mutant (D555V) preferentially co-purified with ATP (Williams et al. 
2014). It has earliar been studied that in the resting state of the NBS-LRR, part of 
the tobacco N protein was present in ATP-bound form, while interaction with the 
effector molecules triggered exchange of ATP for ADP (Ueda et al. 2006). Both 
events indicate that NBS-LRR protein activation takes place due to the changes in 
nucleotide-binding state.

Recently, an unexpected and additional enzymatic activity has been identified in 
the NB-ARC domain of NBS-LRR proteins: PSiP from corn, R1 from rice (NB), 
and RPM1 from Arabidopsis. It has been proven that ATP is hydrolyzed by this 
domain in anticipation of the nucleoside instead of diphosphate (Mayerhofer et al. 
2016), thus indicating that phosphatase activity is associated with NBS domain. The 
phosphatase activity for NB is consistent and after activation of the NBS-LRR pro-
tein returns to an adenosine-bound state rather than an ADP bound conformation.

Once NBS-LRR protein gets activated, it acquires conformational changes in its 
structure. Conformational changes in NBS-LRR protein may expose different bind-
ing surfaces for the interactions with other proteins. Activation of an NB-LRR pro-
tein, and a subsequent change in conformation, may expose different potential 
binding surfaces allowing distinct interactions with other proteins. For instance, I2 
mutants having differences in their nucleotide-binding state (ADP, ATP, or vacant) 
illustrate diverse interaction patterns in a yeast two-hybrid assay (Lukasik- 
Shreepaathy et al. 2012).

5.10  NBS-LRR Signal Transduction

Gene-for-gene model is based on the physical interaction between R proteins and 
pathogen effectors. This physical interaction results in the plant defense responses 
and eventually leads to resistance (Keen 1990). The tomato non-NBS-LRR Pto pro-
tein kinase interacts directly with its cognate bacterial effector AvrPto within the 
serine-threonine kinase activation domain. Tomato Pto also interacts directly with 
second bacterial effector AvrPtoB. AvrPtoB has intrinsic E3 ubiquitin ligase activ-
ity. This direct interaction with effectors was demonstrated in NBS-LRR genes. 
This has led to the guard hypothesis, which predicts that an effector protein interacts 
with a host target, which is itself recognized by more than one NBS-LRR protein 
(Jones and Dangl 2006).

This is supported by Arabidopsis RIN4 protein. Arabidopsis RIN4 protein is an 
example of a host target for type-III bacterial effectors, which is recognized by at 
least two CNL R proteins (Mackey et  al. 2002).Yeast two hybrid analyses of 
RPM1- RIN4 interactions proved that the amino-terminal domain seems to mediate 
the physical association between resistance proteins and pathogen effector targets 
(Young and Roger 2006). This is at least applicable for those resistance proteins 
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that use an indirect recognition mechanism (Young and Roger 2006). Therefore, it 
has been suggested that the amino-terminal domain of plant NBS-LRR proteins 
may be involved in both detection of the pathogen signal and activation of the 
downstream response.

RIN4 is also targeted by structurally unrelated bacterial effectors AvrRpm1 and 
AvrB. Phosphorylation of RIN4 caused by AvrRpm1 and AvrB activates the R pro-
tein RPM1. A third effector, AvrRpt2 is recognized by RIN4 inside the plant cell. 
This effector cleaves RIN4 at two sites, and this cleavage activates the NBS-LRR 
protein, RPS2. Consequently, activation of HR on pathogen shot triggers a resis-
tance response called SAR. SAR results in the accumulation of salicylic acid (SA) 
throughout the plant and the consequent expression of a characteristic set of defense 
genes. The SAR makes plants more resistant to subsequent attack by a range of 
other pathogens (Glazebrook 2001). Some defense responses require jasmonic acid 
(JA) and ethylene (ET) as signal molecules. The discovery of new genes and mutants 
allows dissection of local and systemic signaling cascade networks. These further 
highlight the complex interplay between defense molecules such as nitric oxide, 
SA, reactive oxygen intermediates, JA, and ET (Thomma et al. 2001).

Feys and Parker (2000) detected two Arabidopsis mutant ndr1 and eds1. The 
mutant ndr1 and eds1 suppress race-specific resistance to strains of the bacterium 
Pseudomonas syringae. Generally, EDS1 and NDR1 are independently required for 
the function of different NBS-LRR genes. TIR-NBS-LRR R genes are suppressed 
by EDS1, whereas a subset of non-TIR-NBS-LRR R proteins is suppressed by 
NDR1 (Joshi and Nayak 2011).

RAR1/SGT1/HSP90 {RAR1 (required for Mla-dependent resistance 1), SGT1 
(suppressor of G2 allele of SKP1), and HSP90 (heat shock protein 90)} are the 
cytoplasmically localized signaling complexes, and these proteins regulate R gene- 
mediated resistance (Austin et al. 2002; Azevedo et al. 2002; Muskett et al. 2002). 
All components work together to stabilize various NBS-LRR R protein complexes. 
SGT1 is the essential component for the function of SCF (Skp1-cullin-F-box pro-
tein) E3 ubiquitin ligase complex. SCF E3 ubiquitin ligase complex targets proteins 
for degradation and this degradation is caused the 26S proteasome. Therefore, R 
gene-triggered defense is also mediated by the ubiquitin-proteasome pathway. The 
components of the mitogen-activated protein kinase (MAPK) cascades are also 
other key regulators in the defense mechanism (Asai et  al. 2002). Importantly, 
SA-inducible defenses are negatively regulated by the MAPK, EDR1 (Frye et al. 
2001), whereas MAPK4 seems to differentially regulate JA and SA signals (Petersen 
et al. 2000). These studies strongly suggest that MAPK modules participate in dif-
ferent plant disease resistance pathways. Ankyrin repeat protein, NPR1, is also an 
important feature of the systemic signaling. Initially, it was identified as an SA 
response regulator which participates in both ISR (induced systemic resistance) and 
SAR. On treating Arabidopsis seedlings with SA, movement of NPR1 to the nucleus 
was observed. In the nucleus, NPR1 binds to many TGA (TGACG DNA motif) 
class transcription factors and confers a feasible route to defense gene induction 
(Fan and Dong 2002).
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5.11  Conclusions

In plant innate immunity, NBS-LRR protein-based defense of plants to various 
pathogens is a foremost area of interest. Evolutionary studies on interactions 
between plants and pathogens provide a key idea to modify important crops for 
pathogen defense. However, only few such interactions have been successfully 
decoded regardless of the abundant NBS-LRR genes present in plant genomes. 
Further research should be focused on detecting new NBS-LRR genes and their 
related pathogen effectors and molding these NBS-LRR proteins and their interac-
tions. Such studies would make it feasible to modify the plant defense against a 
range of plant pathogens.
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Abstract
Mitogen-activated protein kinases (MAPKs) are cell-signaling enzymes that 
govern an extraordinarily discrete range of biological processes in eukaryotes. 
MAPK cascade has come up as one of the most well-studied signaling pathways 
in recent years. It plays a vital role in transmitting extracellular signals to the 
nucleus in response to various environmental stresses. A MAPK cascade com-
poses of a three strata system where each stratum is phosphorylated by upper 
stratum. It is depicted as a MAP3K-MAP2K-MAPK module that serves as a link 
between upstream receptors and downstream targets. MAP2K being the middle 
point of this cascade converge all the signals from upstream MAP3Ks and target 
genome through downstream MAPKs. Occasionally, MAP4Ks also get employed 
in coupling upstream signaling components to the core MAPK cascade. MAPKs 
then direct various genes involved in stress responses as well as cellular and 
developmental processes. Therefore, in this chapter, an endeavor has been made 
to compile the role of MAPK cascade in biotic stress in plants.
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6.1  Introduction

Plants are one of the most essential components of our ecosystem. They photosyn-
thesize and convert light energy into chemical energy, thus a rich source of energy/
food for most life-forms on earth including microbes capable of infecting plants. 
These microbes or phytopathogens when infectious result in biomass reduction, 
decreased fertility, or even death, thus a prime reason of human concern, as they 
pose an increasing threat to food security by decreasing the quality or quantity of 
crop production. In order to combat such infections, plants have developed different 
response systems at molecular, cellular, organ levels through evolution for effective 
protection. Plants are predominantly resistant to the majority of pathogens. 
Primarily, they are protected against pathogens by various physical barriers, e.g., 
cuticle and cell wall. Cuticle is a combination of cutin and waxes and adcrusted on 
the epidermis of most aerial plant organs (Yeats and Rose 2013). Besides preventing 
water loss and protecting against UV radiation, it also forms a barrier against patho-
gens. Cell wall provides both skeletal support and protection. Fungal pathogens can 
penetrate these barriers by mechanical rupture or enzymatic degradation but bacte-
ria cannot. The latter instead make entry into plant cells via natural openings, e.g., 
stomata, hydathodes, wound sites, etc. (Melotto et al. 2008).

In addition to physical barriers, plants also possess a variety of antimicrobial 
compounds that are produced during pathogen attack. Only  a few successful 
microbes that can rupture the preformed barriers then have to confront the plant 
immune system which is comprised of pathogen recognition and defense. The first 
layer of the plant immune system involves pathogen perception via the identifica-
tion of conserved pathogen-associated molecular patterns (PAMPs) by plant patho-
gen or pattern recognition receptors (PRRs). PRRs are usually plasma 
membrane-bound receptor-like kinases (RLKs) or receptor-like proteins with extra-
cellular domains allowing MAMP perception (Bohm et  al. 2014). Sometimes 
PAMPs are of nonpathogenic origin too, hence alternatively known as microbe- 
associated molecular patterns (MAMPs). The latter are microbe-derived particles 
that are important for microbes, but that can be identified by plants. MAMPs can be 
proteins (e.g., bacterial flagellin and elongation factor Tu), carbohydrates (e.g., fun-
gal chitin), lipopolysaccharides, etc. (Felix et al. 1999; Kunze et al. 2004; Albert 
2013). There is another set of molecules which are plant degradation products aris-
ing from the activity of invading pathogens following pathogen attacks. These are 
known as damage-associated molecular patterns (DAMPs), for example, cutin 
monomers (Yeats and Rose 2013; Serrano et al. 2014), cell wall damage products 
(Hamann 2012), or endogenous peptides, such as AtPep1, which is derived from its 
precursor PROPEP1 (Huffaker et al. 2006). The recognition of all these molecules 
by the plant incites the pathogen-triggered immunity or pattern-triggered immunity 
(PTI), a sophisticated set of reactions meant for resisting against a pathogen attack 
(Boller and Felix 2009; Yamaguchi and Huffaker 2011). Pathogen perception can 
also ensue via the detection of pathogen effectors, which are molecules manufac-
tured by the pathogens and carried in the extracellular matrix or into the plant cell 
to augment pathogen competence by, for example, counteracting the induction of 
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PTI. Plants that are incapable of recognizing these effectors are susceptible to a 
pathogen, while plants that can recognize the effectors via disease resistance pro-
teins (R proteins) can induce an immune response called effector-triggered immu-
nity (ETI). The coevolution of plants and pathogens and particularly their range of 
effectors and R proteins created the so-called zigzag model (Jones and Dangl 2006).

Plants are proficient in inducing a number of defense mechanisms upon pathogen 
infection, including blockage of nutrient transfer from the cytosol to the apoplast to 
inhibit bacterial multiplication (Chen et al. 2010; Wang et al. 2012), closing of sto-
mata to curb entry of bacteria (Melotto et al. 2008; Sawinski et al. 2013), production 
and secretion of antimicrobial compounds including phytoalexins (Cowan 1999; van 
Loon et al. 2006; Ahuja et al. 2012; Bednarek 2012), generation of reactive oxygen 
species (ROS), which have toxic effects on pathogens (O’Brien et al. 2012), and a 
programmed cell death (PCD), referred to as the hypersensitive response (HR), at the 
site of infection to terminate pathogen expansion (Mur et al. 2008).

The inception of these defense mechanisms upon pathogen recognition depends 
on an intricate network of signaling pathways. Nearly all of the signal transduction 
mechanisms are inflected by protein phosphorylation and dephosphorylation that is 
regulated by protein kinases and protein phosphatases (Zolnierowicz and Bollen 
2000). This swift and effective signaling system performs all obligations desired to 
interconnect the signaling with gene expression processes in coordination with the 
physiological status of the cell. Several protein kinases (PKs) involved in cellular 
signal transduction services have been identified in plants. PKs transform proteins 
by catalyzing the addition of monophosphate groups to the side chains of amino 
acid residues (usually serine, threonine, and/or tyrosine) in the protein backbone. 
This process is reversible with the help of an enzyme, phosphatase which is capable 
of removing phosphate group (Zolnierowicz and Bollen 2000). The plant PK super-
family embodies different classes of kinases grouped on the basis of their amino 
acid sequence similarity. Mitogen-activated protein kinases (MAPKs) are one of the 
most conserved and best- characterized protein kinase signaling pathways. MAPK 
was first unveiled by Sturgill and Ray (1986) as a microtubule-associated protein 
kinase. It comprises a family of serine/threonine protein kinases. The extracellular 
signals are read by the uppermost MAPKKKs and are transferred to substrates 
through MAPKs (Hardie 1999). In plants, the first MAPK was observed in alfalfa, 
and pea succeeded by cloning of MAPKs from Arabidopsis thaliana (Mizoguchi 
et al. 1993) and Nicotiana (Wilson et al. 1996). Both environmental stresses and 
development signals are capable of triggering MAPK signaling cascade (Sinha 
et al. 2011; Xu and Zhang 2015), and the latter also have a significant role in plant 
disease resistance signaling (reviewed by Meng and Zhang (2013)). However, the 
molecular mechanisms of how signal perception is transduced to MAPK activation 
remain elusive. Recently, Cheng et al. (2015) reported a novel plant immune path-
way where proteases secreted by pathogens stimulate a previously unknown signal-
ing pathway in A. thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric 
G-protein complexes, which function upstream of a MAPK cascade. This chapter 
mainly emphasizes the involvement of mitogen-activated protein kinases (MAPKs) 
in biotic stress.
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6.2  General Framework of MAPK Cascade

MAPK cascade is one of the most widely studied signaling pathways, which eukary-
otic cells use to adapt in response to extracellular stimuli. These are immensely 
conserved signaling modules. Typically, a MAPK cascade consists of three kinases, 
a MAPKKK (MAP3K or MEKK), a MAPKK (MAP2K or MEK or MKK), and a 
MAPK (MPK), which phosphorylate and therefore activate each other in a specific 
way. It is a three-tier system where each tier is phosphorylated by upper tier. The 
uppermost tier is composed of MAPKKKs that phosphorylate two amino acids in 
the S/T-X3−5-S/T motif of the MAPKK activation loop. The middle tier consists of 
MAPKKs that activate a MAPK through double phosphorylation of the T-X-Y 
motif in the activation loop. These converge all the signals from upstream MAP3Ks 
and target genome through downstream MAPKs. MAPKs are serine/threonine 
kinases capable of phosphorylating a wide range of substrates, including other 
kinases and/or transcription factors. The fourth level of kinases, named MAPKKKKs 
(or MEKKKs), may act as adaptors linking upstream signaling steps to the core 
MAPK cascades. Interactions between kinases within a MAPK cascade occur 
through docking sites present in the kinases and/or with the help of external scaf-
folding proteins (Hamel et al. 2006; Ichimura et al. 2006).

MAPK proteins possess a highly conserved kinase domain enclosing 11 sub- 
domains. Depending on the amino acid motif present at the phosphorylation site 
between the sub-domains VII and VIII, they are grouped as TEY and TDY activa-
tion motifs. The TEY subtype can be further formulated into three groups, A, B, and 
C, whereas the TDY subtype forms a more distant group D (MAPK Group 2002). 
Group A MAPKs are mostly associated with developmental processes and are acti-
vated in response to biotic and abiotic stresses, whereas group B members are impli-
cated in pathogen defense and abiotic stress responses (Rodriguez et  al. 2010). 
Group D members possess a C-terminal common docking (CD) domain that may 
act as a docking site for MAPKKs. The former TEY subtype contains a phosphory-
lation motif in the activation loop, while TDY subtype has motif within its active 
site buried at its domain surface. The N-terminal domain of MAPK protein has 135 
residues which are aligned largely in the form of β-sheets and a glycine-rich loop 
named as phosphate anchor ribbon, while the C-terminal domain is of 225 amino 
acids bearing a catalytic base, Mg2+ binding sites, and the phosphorylation lip (acti-
vation loop). The sequence of phosphorylation and activation loop affects the sub-
strate specificity. The TXY(XD/E/P) motif is a dual phosphorylation site, and 
phosphorylation of both residues is a prerequisite for the activation of this cascade.

MAPKKs could be split into four groups (A, B, C, and D) based on sequence 
similarities. Members of groups A and B carry eight to nine exons, while groups C 
and D possess only one exon. Kinases in group B are depicted by a nuclear transfer 
factor (NTF) domain (MAPK group 2002) which increases the nuclear import of 
cargo proteins and hence actively involved in cytoplasmic-nuclear transport. 
Different members of the same group are activated in the presence of different stim-
uli (Xu et al. 2008a; Zhou et al. 2009).
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MAPKKKs are highly divergent and constitute the largest and most complex 
group of MAPK cascade. Rao et al. (2010) categorized MAPKKKs from rice and 
Arabidopsis into three subgroups, i.e., Raf, ZIK, and MEKK. Raf family members 
are characterized by the presence of a long N-terminal regulatory domain and a 
C-terminal kinase domain. In contrast, ZIK family members largely have N-terminal 
kinase domain. MEKK family members possess relatively a less conserved protein 
structure with kinase domain located either at N- or C-terminal or central part of the 
protein. Ubiquitin-interaction motif and ACT domain, which has a regulatory role 
in a wide range of metabolic enzymes, are seen only in the members of Raf family 
from rice and Arabidopsis (Rao et al. 2010).

6.3  MAPK Substrates

Presently, it is a great challenge to link a given Protein Kinase (PK) to its substrate 
with high specificity. In higher eukaryotes, nearly one-third of all proteins are gov-
erned by phosphorylation by PKs. Although plants are known to contain more than 
1000 PKs, the substrates of only a few of them have been correctly identified. 
MAPK substrates have been the most extensively studied. An estimated 50% of the 
MAPK substrates are transcription factors. It was reported that MAPK phosphory-
lation regulates transcription factors by altering their activity, localization, and/or 
stability. A regular MAPK has an active site and a common docking site. Both sites 
are placed nearby and are involved in recognition and binding of target proteins. 
MAPK phosphatases and scaffolding proteins play a regulatory role in MAPK sig-
naling specificity, location, and duration.

To identify potential MAPK substrates, direct protein-protein interaction and 
activity screens were used in various studies (Bethke et al. 2009; Zhang et al. 2016a). 
Feilner et al. (2005) used protein microarray and identified 48 in vitro substrates for 
MPK3 and 39 substrates for MPK6. Twenty six substrates were found common to 
both MAPKs. Similarly, 570 in vitro substrates for 10 different MAPKs were identi-
fied by employing Arabidopsis protein microarrays (Popescu et  al. 2009). There 
was an overlap of 30–40% between the MPK3 and MPK6 substrates suggesting 
some functional redundancies of the two MAPKs. In Arabidopsis, ACS6 (1- aminoc
yclopropane- 1-carboxylic acid synthase), PHOS32, bHLH speechless, VIP1, EIN3, 
WRKY53, WRKY33, MKS1, and ERF104 have also been identified as MAPK sub-
strates (Andreasson and Ellis 2010). Sheikh et al. (2016) characterized WRKY46 as 
a substrate of AtMPK3. The type 3 effector NopL of Sinorhizobium sp. strain 
NGR234 is a newly identified mitogen-activated protein kinase substrate (Ge et al. 
2016). MKS1 was reported to interact with MPK4 in a yeast 2-hybrid analysis and 
has a putative role in plant defense (Andreasson et al. 2005). The MPK4-MKS1 
interaction was validated in planta by co-immunoprecipitation, and it was found 
that MKS1 further interacted with two transcription factors, WRKY29 and 
WRKY33. Later on, it was reported that MPK4 is found in complexes in vivo with 
PAT1, a constituent of the mRNA decapping machinery (Roux et al. 2015). PAT1 is 
also phosphorylated by MPK4, and, upon flagellin PAMP treatment, PAT1 
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accumulates and localizes to cytoplasmic processing (P) bodies which are sites for 
mRNA decay. Pat1 mutants exhibit dwarfism and derepressed immunity dependent 
on the immune receptor SUMM2. Since mRNA decapping is a critical step in 
mRNA turnover, linking MPK4 to mRNA decay via PAT1 provides another mecha-
nism by which MPK4 may rapidly instigate immune responses (Roux et al. 2015). 
There is another study by Li et al. (2015) which demonstrates the negative regula-
tion of plant defense by MPK4 via ASR3 (Arabidopsis SH4-related3), a trihelix 
transcriptional repressor. ERF104, an ethylene response factor, is specifically phos-
phorylated by MPK6 in vitro and is involved in defense responses (Bethke et al. 
2009).

6.4  MAPK Modules in Biotic Stress

As discussed previously, plants have multilayered defense mechanism to protect 
themselves from pathogens (Jones and Dangl 2006). The first mechanism involves 
pattern recognition receptors (PRRs), which recognize conserved PAMPs. Under 
stress, these receptors (PRRs) get activated and stimulate convergent intracellular 
signaling pathways, which initiates the establishment of PAMP-triggered immunity 
(PTI). Defense responses in PTI are, in general, transient and are not associated 
with HR cell death. The other mechanism is known as effector-triggered immunity 
(ETI) which is essentially quantitatively stronger and longer-lasting than PTI.  It 
often results in HR death.

6.4.1  MAPKs in PAMP-Triggered Immunity (PTI)

MAPKs play key roles in PTI signal mechanism by transducing signals from PRRs 
to downstream targets. The bacterial flagellin receptor FLS2, which identifies a 
conserved 22-amino-acid peptide (flg22) from flagellin (Gomez-Gomez and Boller 
2000); the bacterial elongation factor EF-Tu receptor EFR, which acknowledges a 
conserved 18-amino-acid epitope (elf18) of EF-Tu (Zipfel et  al. 2006); and the 
chitin receptor CERK1 from Arabidopsis (Miya et al. 2007; Wan et al. 2008) are 
among few well-characterized plant PRRs. Both flg22 and elf18 can provoke a 
strong but transient stimulation of MAPKs in Arabidopsis, including MPK3, 
MPK6, MPK4, and MPK11 (Asai et al. 2002; Zipfel et al. 2006; Suarez-Rodriguez 
et al. 2007; Ranf et al. 2011; Roux et al. 2011; Bethke et al. 2012). Upon activation 
by PAMPs, both FLS2 and EFR form heterodimers with BRI1-associated kinase 
(BAK1), a positive regulator of PTI (Chinchilla et al. 2007). Mutation in BAK1 
leads to significant decline of flg22- and elf18-triggered activation of MPK3, 
MPK6, and MPK4 (Heese et al. 2007; Roux et al. 2011). BKK1 was reported to be 
essential for flg22- and elf18-induced MAPK activation, and it is thought to act 
collaboratively with BAK1 in the PAMP signaling (Roux et al. 2011). At present, 
molecules connecting the receptor complexes and MAPK cascades are still enig-
matic. One possible regulator downstream of the FLS2-BAK1 complex is the 
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cytoplasmic protein kinase BIK1 (Botrytis-induced kinase 1), which interacts with 
and is phosphorylated by the FLS2-BAK1 complex and is needed for flg22-trig-
gered PTI responses (Lu et al. 2010).

The first complete MAPK cascade in regulating plant defense against the bacte-
rial pathogen, MAP3K1-MAPKK4/MAPKK5-MAPK3/MAPK6-WRKY22/
WRKY29, was reported to be downstream of flagellin receptor kinase (FLS2 LRR) 
(Asai et al. 2002). Later studies revealed normal MPK3/6 activation in MAP3K1 
mutant plants after flg22 treatment indicating that MAP3K1 is not upstream of 
MAPKK4/MAPKK5 (Ichimura et al. 2006; Nakagami et al. 2006; Suarez-Rodriguez 
et al. 2007). Instead, there are redundant orthologs of MAP3K1 in the flg22-elicited 
activation of MAPK3 and MAPK6. As mentioned above, an elicited FLS2 complex 
with BAK1 induces MAPK signaling cascade (Fig. 6.1). Another flg22-activated 
MAPK cascade, MAP3K1-MAPKK1/MAPKK2-MAPK4-MKS1, mediates jasmo-
nate- and salicylate-dependent defense responses (Qiu et al. 2008). This cascade 
negatively regulates plant immunity as the mutants of either MAP3K1 or MAPK4 
resulted in more resistance to pathogens. It was proposed that MAPK4 along with 
its substrate MAP kinase substrate 1 (MKS1) and WRKY33 controlled the expres-
sion of camalexin biosynthetic enzyme, phytoalexin deficient 3 (PAD3). Upon 
microbial attack, WRKY33 is released from this complex and attaches to a PAD3 
promoter and activates its expression (Qiu et al. 2008). The production of camalexin 
was compromised in mpk3 and mpk6 mutants depicting a role of MPK3/6 in defense 
responses. MAPKK3 participates in jasmonate-mediated developmental signaling 
and pathogen defense responses through activation of MAPK6 (Takahashi et  al. 

Fig. 6.1 Plant mitogen 
activated protein kinase 
(MAPK) cascade in 
response to flagellin in 
Arabidopsis
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2007). The interplay between the positive upregulation of defense responses via 
MAPK3/6 and the negative regulation via MAPK4 likely enables the tight control 
of defense responses to promote or restrict growth and make appropriate death ver-
sus survival decisions.

6.4.2  MAPKs in Effector-Triggered Immunity

ETI and R gene signaling also involves MAPK cascades as evidenced by various 
studies in tobacco and tomato. Wound-induced protein kinase (WIPK) and salicylic 
acid-induced protein kinase (SIPK) were found to get activated by tobacco mosaic 
virus (TMV) infection in plants that express the N resistance gene (Zhang and 
Klessig 1998). Both of these MAPKs also got induced in transgenic tobacco cells 
expressing the Cf-9 resistance gene. Loss-of-function experiments demonstrated that 
SIPK, WIPK, and their upstream MAPKK2 are required for N-gene-mediated TMV 
resistance. Another well-studied example is the tomato Pto-mediated ETI where 
overexpression of tomato MAP3K, MAPKKKα, increased the development of HR 
lesions, whereas its silencing led to the inhibition of HR (del Pozo et al. 2004). Later, 
MAPKK1-NTF6 and MAPKK2-SIPK were proposed to act downstream of Pto 
resistance gene (Ekengren et al. 2003). AvrPto and AvrPtoB effectors showed inter-
action with FLS2 and BAK 1. AvrPto can cease the binding of BAK1 to FLS2, while 
AvrPtoB mediates polyubiquitination and proteasome-dependent degradation of 
FLS2. In this way, both effectors negatively regulate MAPK signaling.

Many bacterial pathogens employ the HopAI1 effector, which has a unique phos-
phothreonine lyase activity that dephosphorylates MAPKs (Li et al. 2007). It was 
deciphered that inducible expression of HopAI1 inactivated the MAPK3 and MAPK6 
resulting in the complete suppression of PAMP-induced genes and ROS burst. 
Another effector molecule HopPtoD2 from P. syringae pv. tomato is known to pos-
sess phosphatase activity. Its expression in tobacco cells led to a decline in cell death 
induced by expression of the constitutively active MAPKK variant NtMEK2DD. 
However, HopPtoD2 does not inhibit flg22-mediated MAPK activation in Arabidopsis.

An interesting example of an opportunistic interaction between plants and bacte-
ria is where pathogens manipulate host MAPK signaling and hijack AtMPK3 by 
Agrobacterium tumefaciens. The activation of MPK3  in response to flg22 or 
Agrobacterium results in the phosphorylation, subsequently followed by nuclear 
translocation of the host protein VIP1 (virE2-interacting protein 1). Agrobacteria 
hijack this nucleocytoplasmic shuttle system (VIP1) to transfer their T-DNA into 
the host nucleus, where it integrates into the host genome (Djamei et  al. 2007). 
Because VIP1 does not only serve as a nuclear shuttle for the pathogenic T-DNA 
complex but can also induce the expression of defense genes, nuclear VIP1 would 
be counteracting Agrobacterium invasion. Agrobacterium targets nuclear VIP1 for 
proteasome degradation by secreting VirF effector, which helps in ceasing VIP1- 
induced plant defense genes activation.

Stomata play an essential role in plants as they are involved in various physiologi-
cal functions like photosynthesis, respiration, and transpiration and also responsible 
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for gas exchange. But sometimes, various pathogens use them as an entrance gate to 
enter into their hosts. Pathogen-induced stomatal closure restricts the invasion of 
various pathogens. Therefore, stomata are important in providing protection against 
both biotic and abiotic stresses. MAPKs have been implicated in both stomatal 
development and function. In drought stress, stomatal closure mediated by ABA 
involves MKK1, MPK3, and MPK6 (Hamel et  al. 2006; Gudesblat et  al. 2007). 
Previous studies have also indicated crosstalk between ABA and defense signaling. 
The MAPK cascade, comprising YODA-MAPKK4/MAPKK5-MAPK3/MAPK6, 
plays an important role in regulating stomatal development (Bergmann et al. 2004; 
Wang et al. 2007; Bayer et al. 2009; Popescu et al. 2009). MAPK9 and MAPK12 
were reported to be downstream of H2O2 in regulating ABA-induced stomatal clo-
sure (Jammes et al. 2009). It was reported that mapk9-1/12-1 double mutants were 
highly susceptible to Pseudomonas syringae DC3000 compared to wild-type plants. 
These results suggested that the regulation of stomatal apertures by MAPK9 and 
MAPK12 contributed to the first line of defense against pathogens (Jammes et al. 
2011). Whether pathogen-induced and ABA-induced stomatal closures are signaled 
via a common MAPK cascade remains to be elucidated.

Fungal pathogens are also known to induce MAPK cascades (Izumitsu et  al. 
2009). Phytophthora infestans attack led to the swift transcriptional induction of 
MAP3K19, MAPKK9, and MAPKK4, whereas Botrytis cinerea infection led to 
enhanced transcriptional activation of MAP3K18, MAP3K19, MAP3K20, Raf43, 
ZIK2, and ZIK8, suggesting the distinct signaling pattern in response to bacterial 
and fungal pathogen attack. Cardinale et al. (2002) described the activation of SIMK 
and SAMK by various fungal elicitors. Two alfalfa MAPKs, MMK2 and MMK3 
(Medicago MAPK2 and MAPK3, respectively), were shown to be activated by fun-
gal elicitors. Nevertheless, a fungal biocontrol agent Trichoderma asperellum was 
shown to induce systemic resistance in plants through a mechanism that employs 
jasmonic acid (JA) and ethylene (ET) signal transduction pathways resulting in acti-
vation of a Trichoderma-induced MAPK (TIPK) gene in cucumber (Shoresh et al. 
2006). MAPKK1 is involved in defense responses including flg22-induced activa-
tion of MAPK4 (Asai et al. 2002; Meszaros et al. 2006). MAPKK7 is a positive 
regulator of systemic acquired response (Zhang et al. 2007). MAPKK7/9 is hypoth-
esized to regulate cell death during pathogen defense. Several other groups reported 
proteins, e.g., NLPs (necrosis and ethylene-inducing peptide1-like proteins) trigger-
ing MAPK activation and inducing defense responses (Qutob et al. 2006).

6.5  Defense Studies from Different Plant Sources

Recently, a lot of information has been gathered where microbial attack led to the 
activation of MAPKs in different plant genera as described below. Ectopic expres-
sion of Cotton GhMPK11 decreased disease resistance through the gibberellin sig-
naling pathway in transgenic Nicotiana benthamiana (Wang et  al. 2016). In 
watermelon, transient expression of CIMPK1, CIMPK4-2, and CIMPK7 in N. ben-
thamiana resulted in enhanced resistance to B. cinerea and upregulated expression 
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of defense genes, while transient expression of CIMPK6 and CIMKK2-2 led to 
increased susceptibility to B. cinerea (Song et  al. 2015). Approximately 74 
MAP3Ks, 9 MAPKKs, and 19 MAPKs were identified in maize followed by func-
tional studies (Kong et al. 2013; Liu et al. 2013). The role of ZmMKK1 in patho-
gen defense has been deciphered by Cai et al. (2013) where it played a differential 
function in necrotrophic versus biotrophic pathogen defense responses. 
Overexpression of ZmMPK5  in tobacco- induced increased resistance to viral 
pathogens and activated the expression of PR genes, e.g., PR1a, PR4, PR5, and 
EREBP (ethylene- responsive element binding protein) (Zhang et  al. 2013). Pan 
et al. (2012) reported the involvement of ZmMPK17, a novel maize group D MAP 
kinase gene, in multiple stress responses. In Gossypium, GhMAPK6a played a 
negative role during pathogen infection as its overexpression increased sensitivity 
to the bacterial pathogen Ralstonia solanacearum. Another MAP2K from G. hir-
sutum, GhMKK1, showed increased susceptibility to the same pathogen by lower-
ing the expression of PR genes, but no interaction between MAPK6a and MKK1 
was observed (Lu et al. 2013).

Polyamines generated in plants play important roles in several developmental 
and physiological processes. AtMPK3 and AtMPK6 are known to play a positive 
role in the regulation of putrescine biosynthesis leading to bacterial pathogen 
defense in Arabidopsis (Kim et al. 2013). The Hordeum vulgare signaling protein 
MAP kinase 4 (HvMPK4) had a similar role to AtMPK4 as both showed negative 
regulation of SA in pathogen defense. HvMPK4 mutant lines detected elevated SA 
levels and were more resistant to hemibiotrophic fungal pathogen Magnaporthe 
grisea (Abass and Morris 2013). NtMKP1 (tobacco MAP kinase phosphatase) anti-
sense lines exhibited increased resistance against a necrotrophic pathogen, B. cine-
rea, and lepidopteran herbivores, Mamestra brassicae and Spodoptera litura. It was 
suggested that NtMKP1 negatively regulates wound response and resistance against 
both necrotrophic pathogens and herbivorous insects through suppression of JA or 
ET pathways via inactivation of MAPK (Oka et al. 2013). Lately, NtMPK2 has been 
reported to positively regulate tobacco defense responses to P. syringae pv. tomato 
DC3000 (Zhang et al. 2016b).

6.6  Function of MAPK Activation in Plant Defense 
Responses

Plants respond differentially to invading pathogens and activate a variety of defense 
mechanisms that often includes stomatal closure, ROS generation, defense gene 
activation, phytoalexins accumulation, cell wall modification, and HR cell death. 
These defense responses are combined by a complex signaling network that involves 
MAPK cascades. In this section, the role of MAPKs in controlling the synthesis 
and/or signaling of defense hormones, reprogramming gene expression, and driving 
metabolic flow to antimicrobial metabolite synthesis, among other defense 
responses, will be discussed.
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6.6.1  Defense Hormone Synthesis and/or Signaling

Phytohormones ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) are an 
important class of signaling molecules involved in plant defense signaling (Wang 
et al. 2002; Broekaert et al. 2006; Browse 2009; Vlot et al. 2009; Spoel and Dong 
2012). SA is usually involved against biotrophs or hemibiotrophs, while JA and ET 
are mostly important against necrotrophs. Upon microbial infection, plants activate 
MAPK cascade, which in turn modulates levels of these phytohormones. Plant 
MAPK cascades have been involved in both the regulation of defense hormone 
biosynthesis and the signaling events downstream of hormone sensing. Recent stud-
ies revealed that a subset of MAPKs in plants, represented by tobacco SIPK/Ntf4/
WIPK and Arabidopsis MPK3/MPK6, plays key roles in regulating pathogen- 
induced ethylene biosynthesis (Liu and Zhang 2004; Han et al. 2010; Li et al. 2012). 
The ethylene signaling pathway is well characterized, and several works demon-
strated that phosphorylation of ACS2 and ACS6 by MPK3 and MPK6 is a key step 
for ET production (Guo and Ecker 2004; Stepanova and Alonso 2009). Binding of 
ethylene to its receptors, ETR1, ETR2, ERS1, ERS2, and EIN4, results in the inac-
tivation of the negative regulator CTR1, which leads to the derepression of the posi-
tive regulator EIN2, the stabilization of the EIN3/EIL transcription factors, 
ethylene-responsive gene expression, and eventually ethylene responses (Stepanova 
and Alonso 2009).

SA plays a pivotal role in plant defense responses, mainly through its down-
stream components, NPR1, and three redundant transcription factors, TGA2, TGA5, 
and TGA6 (Vlot et al. 2009; Spoel and Dong 2012). A current model advocates that 
NPR3 and NPR4 are SA receptors that govern NPR1 levels, ensuing cell death or 
survival depending on SA concentration (Yan and Dong 2014). AtMPK3 and, to a 
lesser extent, AtMPK6 were seen to play a principal role in SA-mediated stimula-
tion of plants for disease resistance (Beckers et al. 2009). When plants were given 
benzothiadiazole (a functional analog of SA) treatment, it resulted in the accumula-
tion of mRNA and inactive proteins of MPK3 and MPK6. Unlike MPK3/MPK6, the 
MPK4 is considered a negative regulator of SA signaling because mpk4 mutant or 
mutation of its upstream MKK1/MKK2 and MEKK1showed elevated levels of SA, 
constitutive PR-1 expression, and SAR (Petersen et  al. 2000; Kong et  al. 2012). 
Lately, SUMM2, an R protein, was reported to be essential for activation of SA 
responses in the mpk4 mutant, indicating that the constitutive SA responses in the 
mpk4 mutant are induced by the SUMM2-mediated signaling pathway (Zhang et al. 
2012). Additionally, MPK4 substrate 1 (MKS1), a substrate of MPK4, is also 
required for full activation of SA responses in the mpk4 mutant (Andreasson et al. 
2005), but no interaction of MKS1 with SUMM2 has been detected (Zhang et al. 
2012), proposing that SUMM2-mediated activation of SA responses may be inde-
pendent of MKS1.

JA is another important defense hormone activated during pathogen infection, 
herbivore attack, and mechanical wounding (Browse 2009; Gfeller et al. 2010). In 
tobacco, WIPK and SIPK were shown to be vital for wounding- and herbivore- 
induced JA production, whereas overexpression of WIPK was seen to be sufficient 
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to induce JA accumulation (Seo et al. 1999, 2007; Wu et al. 2007). However, in the 
conditional gain-of-function NtMEK2DD plants, activation of WIPK and SIPK was 
insufficient to induce JA accumulation (Kim et al. 2003). It is possible that these two 
MAPKs are needed but not sufficient to induce JA synthesis. Later, AtMPK6 was 
reported to be an important regulator of the JA signaling pathway (Takahashi et al. 
2007). AtMPK6 together with its upstream AtMKK3 was shown to be involved in 
JA-dependent negative regulation of JIN1/MYC2 expression and root growth. 
MPK4 was also implicated in the JA signaling pathway. The MPK4 deficient lines 
exhibited constitutive activation of SA-dependent defenses but compromised the 
expression of JA-responsive genes (Petersen et al. 2000). Interestingly, removing 
SA in the NahG/mpk4 double mutant failed to reverse the suppression of JA-inducible 
gene expression, suggesting that MPK4 positively regulates JA-inducible responses 
independent of its negative regulation of SA signaling (Petersen et al. 2000).

6.6.2  Activation of Defense Genes

MAPKs can activate defense genes via direct phosphorylation of downstream tran-
scription factors. In Arabidopsis, MPK6 interacts with and phosphorylates ERF104 
that activates defensin genes PDF1.2a and PDF1.2b (Bethke et al. 2009). Intriguingly, 
the interaction of MPK6 and ERF104 is rapidly lost in response to flg22, and this 
complex disruption requires MPK6 activity, suggesting that phosphorylation of 
ERF104 by MPK6 in response to flg22 leads to the release of ERF104 from MPK6 
and defensin gene activation (Bethke et  al. 2009). Meng et  al. (2013) identified 
ERF6, another Arabidopsis ERF family member, as a new substrate of MPK3/
MPK6. Phosphorylation of ERF6 by MPK3/MPK6 leads to stabilization of the 
ERF6 protein, which further activates the expression of multiple defense-related 
genes, including PDF1.1, PDF1.2a, PDF1.2b, ChiB, and HEL.  The positive and 
negative roles for soybean MPK6 in regulating defense responses have also been 
reported (Liu et al. 2014).

6.6.3  Phytoalexin Biosynthesis

Phytoalexins are also known to play essential roles in plant defense (Hammerschmidt 
1999; Dixon 2001; Ahuja et  al. 2012). Camalexin (3-thiazol-2′-yl-indole) is the 
major phytoalexins produced in Arabidopsis and related Brassicaceae species (Tsuji 
et al. 1992; Ahuja et al. 2012). Conditional expression of constitutively active vari-
ants of MKK4 (MKK4DD), MKK5 (MKK5DD), or the functionally interchangeable 
NtMEK2 (NtMEK2DD) from tobacco, all of which specifically activate MPK3/
MPK6 in Arabidopsis, leads to camalexin induction and coordinated upregulation 
of multiple genes, including PAD2, CYP71A13, and PAD3, that encode enzymes in 
the camalexin biosynthetic pathway (Ren et al. 2008; Mao et al. 2011). Expression 
of constitutively active MKK9, which also activates MPK3/MPK6, induces cama-
lexin accumulation (Xu et al. 2008b; Su et al. 2011). Consistent with the essential 
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roles of MPK3/MPK6  in regulating camalexin biosynthesis, pathogen-induced 
camalexin accumulation is almost completely abolished in a rescued mpk3/mpk6 
double mutant (Ren et al. 2008), whereas mutations in two MAPK phosphatases 
(MKP1 and PTP1), which target MPK3/MPK6, lead to constitutive camalexin accu-
mulation (Bartels et al. 2009).

Biochemical data revealed that WRKY33 is a substrate of MPK3/MPK6, and the 
MPK3/MPK6 phosphorylation sites in WRKY33 are required for its function 
in vivo (Mao et al. 2011). Interestingly, MPK3/MPK6 also controls the pathogen- 
inducible expression of the WRKY33 gene, and the latter can bind to its own pro-
moter, suggesting a potential MPK3/MPK6-mediated positive feedback regulatory 
loop that controls WRKY33 expression (Mao et  al. 2011). WRKY33 was also 
reported to control camalexin production through its interaction with another 
MAPK, MPK4 (Qiu et al. 2008). It is likely that pathogen-responsive MAPK cas-
cades in different families of plants are responsible for regulating the biosynthesis 
of different types of phytoalexins. The OsMKK4-OsMPK6 module in rice was 
shown to control the chitin elicitor-induced production of diterpenoid phytoalexins 
by regulating the expression of their biosynthetic genes (Kishi-Kaboshi et al. 2010). 
Tobacco SIPK/Ntf4 and WIPK also phosphorylate and thus activate the WRKY33- 
related NbWRKY8, which further induces the expression of 3-hydroxy-3- 
methylglutaryl CoA reductase2 (HMGR2), a key gene for the production of 
isoprenoid phytoalexins (Ishihama et al. 2011). Tobacco HMGR is one of the first 
few defense genes known to be highly induced by SIPK/WIPK activation (Yang 
et al. 2001; Kim and Zhang 2004).

6.6.4  Hypersensitive Response Cell Death

ETI frequently results in HR cell death, a process associated with MAPK activation, 
ROS generation, metabolic reprogramming, and SA accumulation (Greenberg and 
Yao 2004; Coll et al. 2011). Pharmacological studies using kinase inhibitors suggest 
that SIPK and WIPK activation in tobacco is involved in HR-like cell death (Zhang 
et al. 2000). Potential MAPKKKs upstream of the tobacco  NtMEK2-SIPK/Ntf4/
WIPK module include MAPKKKα and MAPKKKε (del Pozo et al. 2004; Melech- 
Bonfil and Sessa 2010). In the search for signaling events downstream of MAPKs 
in mediating HR cell death, ROS generation was found to be associated with 
MAPK-induced cell death (Ren et al. 2002).

6.6.5  PAMP/Pathogen-Induced Reactive Oxygen Species Burst

ROS is considered as an important and common messenger generated in various 
stresses and known to trigger the expression of many MAPKs. PTI is also associ-
ated with rapid ROS production, known as a ROS burst (Apel and Hirt 2004; Torres 
2010). PAMP/pathogen-responsive MAPKs were believed to function downstream 
of early ROS burst in signaling plant immunity, because defense-related MAPKs, 
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including Arabidopsis MPK3, MPK6, and MPK4 and tobacco SIPK and WIPK, can 
be activated by exogenously added H2O2 (Pitzschke et al. 2009). Recently, MAP3K7 
was characterized to suppress the ROS burst downstream of FLS2. It was demon-
strated that MAP3K7 negatively regulates flagellin-triggered signaling and basal 
immunity by attenuating MPK6 activity (Mithoe et  al. 2016). The role of ROS- 
mediated MAPK signaling in plants has been reviewed by Siddhi et  al. (2015) 
where they suggested that ROS can activate a similar MAPK cascade in different 
stresses and can exert differential responses accordingly.

6.6.6  Stomatal Immunity

Plants have an ability of closing their stomata as an immune response to pathogens. 
MAPKs have been cited in both ABA- and PAMP/pathogen-induced stomatal clo-
sure (Pitzschke and Hirt 2009). Gudesblat et al. (2007, 2009) suggested a role of 
MPK3 in stomatal immune response. Guard cell-specific silencing of MPK3 com-
promised PAMP/bacteria-induced stomatal closure but does not affect the stomatal 
closure induced by ABA. MPK6 was reported to modulate NO production by phos-
phorylation and activation of nitrate reductase NIA2 (Wang et  al. 2010). Above 
results indicate that MPK3 regulates stomatal immunity by promoting NO synthe-
sis, which has been implicated to be required for PAMP/pathogen-induced stomatal 
closure (Melotto et al. 2006).

6.7  Conclusion

In recent years, MAPK cascade has shown its universality among eukaryotes and 
has demonstrated its significance in multitude of stress elements. Multifunctionality 
and signaling specificity of MAPKs can be conferred by their ability to phosphory-
late different substrates. For example, in Arabidopsis, MPK3/MPK6 can regulate 
camalexin production, ethylene biosynthesis, NO generation, and defensin gene 
expression by phosphorylating WRKY33, ACS2/ACS6, NIA2, and ERF104 pro-
teins, respectively (Bethke et al. 2009; Han et al. 2010; Wang et al. 2010; Mao et al. 
2011). The identification of additional MAPK substrates will extend our under-
standing of MAPK functions in plant disease resistance. One major void in our 
understanding of plant defense signaling is the connection(s) between the receptors/
sensors and MAPK cascades. So, it’s very crucial to identify these missing links in 
elucidating the functions and underlying molecular mechanisms of MAPKs in plant 
innate immunity. In light of these realities, new experimental strategies are needed 
to generate conditional mutant systems for functional analyses which might reveal 
the fine-tuning mechanisms in plant innate immunity system. The complete MAPK 
cascades have been identified in a few biotic and abiotic stresses, but many are still 
missing. So there is a great requisite to decode the complete signaling cascade with 
specific underlying mechanisms using novel approaches and strategies. This will 
help in engineering the MAPK cascades and their utilization in crop improvement.

M. Jaggi



153

References

Abass M, Morris PC (2013) The Hordeum vulgare signaling protein MAP kinase 4 is a regulator 
of biotic and abiotic stress responses. Plant Physiol 170(15):1353–1359

Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 
17:73–90

Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64:5269–5279
Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. 

Trends Plant Sci 15:106–113
Andreasson E, Jenkins T, Brodersen P et al (2005) The MAP kinase substrate MKS1 is a regulator 

of plant defense responses. EMBO J 24:2579–2589
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduc-

tion. Annu Rev Plant Biol 55:373–399
Asai T, Tena G, Plotnikova J et al (2002) MAP kinase signaling cascade in Arabidopsis innate 

immunity. Nature 415:977–983
Bartels S, Anderson JC, González Besteiro MA et al (2009) MAP kinase phosphatase1 and protein 

tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1 -mediated responses 
in Arabidopsis. Plant Cell 21:2884–2897

Bayer M, Nawy T, Giglione C et al (2009) Paternal control of embryonic patterning in Arabidopsis 
thaliana. Science 323:1485–1488

Beckers GJM, Jaskiewicz M, Liu Y et al (2009) Mitogen -activated protein kinases 3 and 6 are 
required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

Bednarek P (2012) Chemical warfare or modulators of defense responses– the function of second-
ary metabolites in plant immunity. Curr Opin Plant Biol 15:407–414

Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled 
by a MAPKK kinase. Science 304:1494–1497

Bethke G, Unthan T, Uhrig JF et al (2009) Flg22 regulates the release of an ethylene response fac-
tor substrate from MAP kinase 6 in Arabidopsis via ethylene signaling. Proc Natl Acad Sci U 
S A 106:8067–8072

Bethke G, Pecher P, Eschen-Lippold L et al (2012) Activation of the Arabidopsis thaliana mitogen 
-activated protein kinase MPK11 by the flagellin -derived elicitor peptide, flg22. Mol Plant- 
Microbe Interact 25:471–480

Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T (2014) Immune receptor complexes at the 
plant cell surface. Curr Opin Plant Biol 20:47–54

Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe -associated molecular 
patterns and danger signals by pattern -recognition receptors. Annu Rev Plant Biol 60:379–406

Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host 
-pathogen interactions. Annu Rev Phytopathol 44:393–416

Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu 
Rev Plant Biol 60:183–205

Cai G, Wang G, Wang L, Pan J, Liu Y, Li D (2013) ZmMKK1, a novel group A mitogen -activated 
protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in 
pathogen defense in transgenic tobacco. Plant Sci 214:57–73

Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress -induced 
mitogen  – activated protein kinase signaling pathways at the level of two distinct mitogen 
-activated protein kinase kinases. Plant Cell 14:703–111

Chen LQ, Hou BH, Lalonde S et al (2010) Sugar transporters for intercellular exchange and nutri-
tion of pathogens. Nature 468:527–532

Cheng Z, Li JF, Niu Y et al (2015) Pathogen -secreted proteases activate a novel plant immune 
pathway. Nature 521(7551):213–216

Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin -induced complex of the receptor FLS2 
and BAK1 initiates plant defence. Nature 448:497–500

6 Recent Advancement on Map Kinase Cascade in Biotic Stress



154

Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death 
Differ 18:1247–1256

Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582
del Pozo O, Pedley KF, Martin GB (2004) MAPKKK alpha is a positive regulator of cell death 

associated with both plant immunity and disease. EMBO J 23:3072–3082
Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847
Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in agrobacterium 

transformation: abusing MAPK defense signaling. Science 318:453–456
Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1 

and TGA transcription factors play a role in Pto -mediated disease resistance in tomato. Plant 
J 36:905–917

Feilner T, Hultschig C, Lee J et al (2005) High throughput identification of potential Arabidopsis 
mitogen -activated protein kinases substrates. Mol Cell Proteomics 4:1558–1568

Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most 
conserved domain of bacterial flagellin. Plant J 18:265–276

Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C (2016) The type 3 effector NopL of 
Sinorhizobium sp. strain NGR234 is a mitogen -activated protein kinase substrate. J Exp Bot 
67(8):2483–2494

Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 
3(109):cm4

Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor -like kinase involved in the perception 
of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant -pathogen 
interactions. Cell Microbiol 6:201–211

Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell -specific inhibition of Arabidopsis MPK3 
expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New 
Phytol 173:713–721

Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis 
stomatal innate immunity through a DSF cell -to -cell signal -regulated virulence factor. Plant 
Physiol 149:1017–1027

Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 
7:40–49

Hamann T (2012) Plant cell wall integrity maintenance as an essential component of biotic stress 
response mechanisms. Front Plant Sci 3:77

Hamel LP, Nicole MC, Sritubtim S et al (2006) Ancient signals: comparative genomics of plant 
MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev 
Phytopathol 37:285–306

Han L, Li GJ, Yang KY et al (2010) Mitogen -activated protein kinase 3 and 6 regulate Botrytis 
cinerea–induced ethylene production in Arabidopsis. Plant J 64:114–127

Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev 
Plant Physiol Plant Mol Biol 50:97–131

Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor -like kinase SERK3/BAK1 is a 
central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222

Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates 
components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 
activation and regulates tissue -specific and temperature -dependent cell death in Arabidopsis. 
J Biol Chem 281:36969–36976

Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana 
benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant 
Cell 23:1153–1170

Izumitsu K, Yoshimi A, Kubo D, Morita A, Saitoh Y, Tanaka C (2009) The MAPKK kinase 
ChSte11 regulates sexual/asexual development, melanization, pathogenicity and adaptation to 
oxidative stress in Cochliobolus heterostrophus. Curr Genet 55:439–448

M. Jaggi



155

Jammes F, Song C, Shin D et  al (2009) MAP kinases MPK9 and MPK12 are preferentially 
expressed in guard cells and positively regulate ROS -mediated ABA signaling. Proc Natl Acad 
Sci U S A 106:20520–20525

Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell -preferential MAPK 
genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6:1875–1877

Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329
Kim CY, Zhang S (2004) Activation of a mitogen -activated protein kinase cascade induces WRKY 

family of transcription factors and defense genes in tobacco. Plant J 38:142–151
Kim CY, Liu Y, Thorne ET et al (2003) Activation of a stress -responsive mitogen activated protein 

kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718
Kim SH, Yoo SJ, Min KH, Nam SH, Cho BH, Yang KY (2013) Putrescine regulating by stress 

-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochem 
Biophys Res Commun 437:502–508

Kishi-Kaboshi M, Okada K, Kurimoto L et al (2010) A rice fungal MAMP responsive MAPK 
cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612

Kong Q, Qu N, Gao M et al (2012) The MEKK1 -MKK1/MKK2 -MPK4 kinase cascade nega-
tively regulates immunity mediated by a mitogen -activated protein kinase kinase kinase in 
Arabidopsis. Plant Cell 24:2225–2236

Kong X, Lv W, Zhang D, Jiang S, Zhang S, Li D (2013) Genome-wide identification and analy-
sis of expression profiles of maize mitogen-activated protein kinase kinase kinase. PLoS One 
8(2):e57714

Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial 
elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

Li H, Xu H, Zhou Y et al (2007) The phosphor threonine lyase activity of a bacterial type III effec-
tor family. Science 315:1000–1003

Li G, Meng X, Wang R et al (2012) Dual -level regulation of ACC synthase activity by MPK3/
MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in 
Arabidopsis. PLoS Genet 8:e1002767

Li B, Jiang S, Yu X et al (2015) Phosphorylation of trihelix transcriptional repressor ASR3 by 
MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27(3):839–856

Liu Y, Zhang S (2004) Phosphorylation of 1 -aminocyclopropane -1 -carboxylic acid synthase by 
MPK6, a stress -responsive mitogen -activated protein kinase, induces ethylene biosynthesis in 
Arabidopsis. Plant Cell 16:3386–3399

Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase 
gene family in maize. Plant Mol Biol Rep 31(6):1446–1460

Liu JZ, Braun E, Qiu WL et al (2014) Positive and negative roles for soybean MPK6 in regulating 
defense responses. Mol Plant-Microbe Interact 27(8):824–834

Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor -like cytoplasmic kinase, BIK1, 
associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad 
Sci U S A 107:496–501

Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and 
drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana 
benthamiana. PLoS One 8(7):e68503

Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY tran-
scription factor by two pathogen -responsive MAPKs drives phytoalexin biosynthesis in 
Arabidopsis. Plant Cell 23:1639–1653

MAPK -Group (2002) Mitogen -activated protein kinase cascades in plants: a new nomenclature. 
Trends Plant Sci 7:301–308

Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell -death signal-
ing networks associated with plant immunity. Plant J 64:379–391

Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate 
immunity against bacterial invasion. Cell 126:969–980

Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar 
bacterial diseases. Annu Rev Phytopathol 46:101–122

6 Recent Advancement on Map Kinase Cascade in Biotic Stress



156

Meng X, Zhang S (2013) MAPK cascades in plant disease signaling. Annu Rev Phytopathol 
51:245–266

Meng X, Xu J, He Y et al (2013) Phosphorylation of an ERF transcription factor by Arabidopsis 
MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 
25(3):1126–1142

Meszaros T, Helfer A, Hatzimasoura E et al (2006) The Arabidopsis MAP kinase kinase MKK1 
participates in defense responses to the bacterial elicitor flagellin. Plant J 48:485–498

Mithoe SC, Ludwig C, Pel MJ et al (2016) Attenuation of pattern recognition receptor signaling is 
mediated by a MAP kinase kinase kinase. EMBO Rep 17(3):441–454

Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin 
elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1993) ATMPKs: 
a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett 336:440–444

Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the cente-
nary is upon us but how much do we know? J Exp Bot 59:501–520

Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen -activated protein 
kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J  Biol 
Chem 281:38697–38704

O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant 
defence and cell wall metabolism. Planta 236:765–779

Oka K, Amano Y, Katou S, Seo S, Kawazu K, Mochizuki A, Kuchitsu K, Mitsuhara I (2013) 
Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and 
induced resistance against necrotrophic pathogens and lepidopteran herbivores. Mol Plant- 
Microbe Interact 26(6):668–675

Pan J, Zhang M, Kong X et al (2012) ZmMPK17, a novel maize group D MAP kinase gene, is 
involved in multiple stress responses. Planta 235:661–676

Petersen M, Brodersen P, Naested H et al (2000) Arabidopsis MAP kinase 4 negatively regulates 
systemic acquired resistance. Cell 103:1111–1120

Pitzschke A, Hirt H (2009) Disentangling the complexity of mitogen -activated protein kinases and 
reactive oxygen species signaling. Plant Physiol 149:606–615

Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2 -MPK4 
pathway in ROS signaling. Mol Plant 2:120–137

Popescu SC, Popescu GV, Snyder M, Dinesh SP (2009) Integrated analysis of co -expressed MAP 
kinase substrates in Arabidopsis thaliana. Plant Signal Behav 4:524–527

Qiu JL, Fiil BK, Petersen K et al (2008) Arabidopsis MAP kinase 4 regulates gene expression 
through transcription factor release in the nucleus. EMBO J 27:2214–2221

Qutob D, Kemmerling B, Brunner F et  al (2006) Phytotoxicity and innate immune responses 
induced by Nep1-like proteins. Plant Cell 18:3721–3744

Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signaling 
and early signaling elements during defence responses to microbe – or damage -associated 
molecular patterns. Plant J 68:100–113

Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members 
of mitogen activated protein kinase kinase kinase gene family in rice. DNA Res 17(3):139–153

Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen per-
oxide production in Arabidopsis. J Biol Chem 277:559–565

Ren D, Liu Y, Yang KY et al (2008) A fungal -responsive MAPK cascade regulates phytoalexin 
biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105:5638–5643

Rodriguez MCS, Petersen M, Mundy J  (2010) Mitogen -activated protein kinase signaling in 
plants. Annu Rev Plant Biol 61:621–649

Roux M, Schwessinger B, Albrecht C et al (2011) The Arabidopsis leucine -rich repeat receptor 
-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibio-
trophic and biotrophic pathogens. Plant Cell 23:2440–2455

Roux ME, Rasmussen MW, Palma K et al (2015) The mRNA decay factor PAT1 functions in a 
pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 34(5):593–608

M. Jaggi



157

Sawinski K, Mersmann S, Robatzek S, Bohmer M (2013) Guarding the green: pathways to stoma-
tal immunity. Mol Plant-Microbe Interact 26:626–632

Seo S, Sano H, Ohashi Y (1999) Jasmonate -based wound signal transduction requires activation 
of WIPK, a tobacco mitogen -activated protein kinase. Plant Cell 11:289–298

Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen -activated protein kinases WIPK 
and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant 
J 49:899–909

Serrano M, Coluccia F, Torres M, L’Haridon F, Metraux JP (2014) The cuticle and plant defense 
to pathogens. Front Plant Sci 5:274

Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J  (2016) 
Regulation of WRKY46 transcription factor function by mitogen -activated protein kinases in 
Arabidopsis thaliana. Front Plant Sci 7:61

Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a MAPK gene from cucum-
ber required for trichoderma-conferred plant resistance. Plant Physiol 142:1169–1179

Siddhi K. Jalmi, Alok K. Sinha (2015) ROS mediated MAPK signaling in abiotic and biotic stress- 
striking similarities and differences. Front Plant Sci 6

Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen -activated protein kinase signaling in 
plants under abiotic stress. Plant Signal Behav 6:196–203

Song Q, Li D, Dai Y, Liu S, Huang L, Hong Y, Zhang H, Song F (2015) Characterization, expres-
sion patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus 
lanatus). BMC Plant Biol 15:298

Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune 
cells. Nat Rev Immunol 12:89–100

Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory 
modules meet. Curr Opin Plant Biol 12:548–555

Sturgill TW, Ray LB (1986) Muscle proteins related to microtubule associated protein-2 are sub-
strates for an insulin stimulatable kinase. Biochem Biophys Res Commun 134:565–571

Su T, Xu J, Li Y et al (2011) Glutathione -indole -3 -acetonitrile is required for camalexin biosyn-
thesis in Arabidopsis thaliana. Plant Cell 23:364–380

Suarez-Rodriguez MC, Adams-Phillips L et  al (2007) MEKK1 is required for flg22 -induced 
MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669

Takahashi F, Yoshida R, Ichimura K et  al (2007) The mitogen -activated protein kinase cas-
cade MKK3 -MPK6 is an important part of the jasmonate signal transduction pathway in 
Arabidopsis. Plant Cell 19:805–818

Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429
Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumula-

tion in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv 
syringae. Plant Physiol 98:1304–1309

van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense -related proteins in 
infected plants. Annu Rev Phytopathol 44:135–162

Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat dis-
ease. Annu Rev Phytopathol 47:177–206

Wan J, Zhang XC, Neece D et al (2008) A LysM receptor -like kinase plays a critical role in chitin 
signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 
14:S131–S151

Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning 
are regulated by environmentally responsive mitogen -activated protein kinases in Arabidopsis. 
Plant Cell 19:63–73

Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide–mediated activation of MAP 
kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 
22:2981–2998

Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in 
plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apo-
plast. Plant Physiol 158:1789–1802

6 Recent Advancement on Map Kinase Cascade in Biotic Stress



158

Wang F, Wang C, Yan Y, Jia H, Guo X (2016) Overexpression of cotton GhMPK11 decreases 
disease resistance through the gibberellin signaling pathway in transgenic Nicotiana benthami-
ana. Front Plant Sci 7:689

Wilson KP, Fitzgibbon MJ, Caron PR et  al (1996) Crystal structure of p38 mitogen -activated 
protein kinase. J Biol Chem 271:27696–27700

Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling 
in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant 
Cell 19:1096–1122

Xu J, Zhang SQ (2015) Mitogen -activated protein kinase cascades in signaling plant growth and 
development. Trends Plant Sci 20:56–64

Xu H, Wang X, Sun X, Shi Q, Yang F, Du D (2008a) Molecular cloning and characterization of a 
cucumber MAP kinase gene in response to excess NO3− and other abiotic stresses. Sci Hortic 
117:1–8

Xu J, Li Y, Wang Y et al (2008b) Activation of MAPK kinase 9 induces ethylene and camalexin bio-
synthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant 
Biol 14:351–357

Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 
20:64–68

Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen -activated protein kinase pathway is 
involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746

Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20
Zhang S, Klessig DF (1998) Resistance gene N -mediated de novo synthesis and activation of a 

tobacco mitogen -activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad 
Sci U S A 95:7433–7438

Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induc-
tion of cell death by fungal elicitins. Plant J 23:339–347

Zhang X, Dai Y, Xiong Y, Defraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis 
MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant 
J 52:1066–1079

Zhang Z, Wu Y, Gao M et  al (2012) Disruption of PAMP -induced MAP kinase cascade by a 
Pseudomonas syringae effector activates plant immunity mediated by the NB -LRR protein 
SUMM2. Cell Host Microbe 11:253–263

Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D (2013) The overexpression of a maize mito-
gen -activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence 
responses in tobacco. Plant Biol (Stuttg) 16(3):558–570

Zhang T, Chen S, Harmon AC (2016a) Protein -protein interactions in plant mitogen -activated 
protein kinase cascades. J Exp Bot 67(3):607–618

Zhang X, Wang G, Gao J, Nie M, Liu W, Xia Q (2016b) Functional analysis of NtMPK2 uncovers 
its positive role in response to Pseudomonas syringae pv. Tomato DC3000 in tobacco. Plant 
Mol Biol 90(1–2):19–31

Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen -activated protein kinase cascade, 
MKK9 -MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177

Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF -Tu by the 
receptor EFR restricts agrobacterium -mediated transformation. Cell 125:749–760

Zolnierowicz S, Bollen M (2000) Protein phosphorylation and protein phosphatases. De Panne, 
Belgium, September 19–24, 1999. EMBO J 19:483–488

M. Jaggi



159© Springer Nature Singapore Pte Ltd. 2018
A. Singh, I. K. Singh (eds.), Molecular Aspects of Plant-Pathogen Interaction, 
https://doi.org/10.1007/978-981-10-7371-7_7

V. G. Checker 
Department of Botany, Kirori Mal College, University of Delhi, New Delhi, India 

H. R. Kushwaha 
School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, New Delhi, India 

P. Kumari 
Department of Life Sciences, Singhania University, Rajasthan, India 

Indian Agricultural Research Institute (IARI), New Delhi, India 

S. Yadav (*) 
Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, 
Srinagar Garhwal, Uttarakhand, India
e-mail: saurabhyadav40@rediffmail.com

7Role of Phytohormones in Plant 
Defense: Signaling and Cross Talk

Vibha Gulyani Checker, Hemant Ritturaj Kushwaha, 
Pragati Kumari, and Saurabh Yadav

Abstract
Plants, being sessile throughout their life cycle, are vulnerable to various kinds 
of abiotic and biotic stress conditions. They have evolved sophisticated mecha-
nisms to detect precise environmental change and respond with an optimal 
response, thereby minimizing damage and conserving resources for growth and 
development. The response of plants towards these stresses are dynamic and 
complex. A defense response is initiated via modulation of molecular events, 
which involves interplay of signaling molecules including phytohormones. 
Phytohormones are small endogenous, low-molecular-weight molecules, which 
trigger an effective defense response against both biotic and abiotic stresses. 
Apart from defense signaling, these phytohormones are also regulators of growth, 
development, and physiological processes. The phytohormones such as auxins, 
cytokinins (CKs), gibberellins (GAs), salicylic acid (SA), jasmonic acid (JA), 
ethylene (ET), abscisic acid (ABA), and brassinosteroids (BRs) respond to stress 
via synergistic and antagonistic actions often referred to as signaling cross talk. 
These phytohormones coordinate with each other in a harmonious manner and 
respond to developmental and environmental cues. All defense response in plants 
are the result of interplay of many genes and gene families nicely orchestrated in 
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a network. Various phytohormones are known to play important role in almost all 
the process through the modulation of genes. Further, through the optimal mix of 
phytohormones, plants maintain homeostasis and adapt to the environmental 
changes. This is only possible by an efficient and systemic cross talk between 
various phytohormones which help plants to maintain a critical balance between 
growth and environmental response. This chapter would assist plant biologist in 
further understanding the ability of the plants to perceive, synthesize, and respond 
to phytohormones in response to environmental stresses.

Keywords
Signaling · Phytohormones · Jasmonates · Biotic stress · Plant defense · Cross 
talk

7.1  Introduction

Plants, throughout their life cycle, are entrenched to one place, which makes them 
vulnerable to various kinds of stress conditions. These stresses can be classified as 
abiotic and biotic stress. A high percentage of the crop production is said to be 
affected due to the persisting stresses (Boyer 1982). All stresses are often interre-
lated and cause physiological, biochemical, and molecular changes which are finally 
reflected in terms of its declined growth and productivity. Over the years, major 
progress has been made using tools and techniques of molecular biology, to under-
stand the comprehensive view of abiotic and biotic stress perception, response, and 
tolerance in plants. Apart from various abiotic stresses, plants also have to face vari-
ous biotic challenges such as pathogenic microbes and herbivorous insects. In order 
to defend against these challenges, plants rely on their immune system and pre-
formed defense systems. Preformed defense system, which is the first hurdle for an 
invading organism, includes various chemical compounds (Osbourn 1996), cuticle 
layers, thick cell walls, needles, thorns, or trichomes. The principal components of 
cell walls are cross-linked high-molecular-weight polysaccharides which resist the 
physical penetration (Carpita and McCann 2000). Also, these cell walls are the 
dynamic reservoirs of antimicrobial proteins and secondary metabolites which pro-
hibit the growth of many pathogens.

Plants also possess multiple layers of innate immune system which detects and 
limits pathogen expansion. One layer of this system uses pattern recognition recep-
tors (PRRs) present on the surface of the plant cell to analyze for molecules contain-
ing signature patterns conserved in microbes known as pathogen-/microbe-associated 
molecular patterns (PAMPs/MAMPs). Detection of these PAMPs/MAMPs triggers 
pattern-triggered immunity (PTI). PTI prevents further pathogen establishment. 
However, some pathogens have developed effector proteins that overpower 
PTI. These pathogens are suppressed via other layers of innate immune system – 
effector-triggered immunity (ETI). Plants have evolved intracellular resistance (R) 
proteins which induce ETI to regain resistance. These R proteins recognize their 
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pathogen-encoded effectors directly or indirectly. The responses initiated by ETI 
are more rapid and intense than PTI.  ETI also turns local infection into global 
defense by forming necrotic lesions which restricts movement of pathogen from the 
infection site (Fu and Dong 2013). Both types of signaling mechanisms (PTI and 
ETI) activate a league of defense responses in the affected tissue, like generation of 
reactive oxygen species (ROS), increase in intracellular Ca2+ concentrations, activa-
tion of mitogen-activated protein kinases (MAPKs), increased expression of various 
defense-associated genes, and production of antimicrobial compounds (Chisholm 
et al. 2006). The rise in intracellular calcium is sensed by calcium sensors which in 
turn bind to cis-elements of promoters of genes conferring tolerance. These calcium 
sensors may also bind DNA-binding proteins controlling these stress-responsive 
genes. The increase in intracellular calcium further activates various kinases and 
phosphatases which can phosphorylate or dephosphorylate transcription factors 
controlling stress-responsive genes. Many defense-related proteins have been iden-
tified in various plant species like PR-1, β1,3-glucanase (PR-2), chitinases (PR-3, 
PR-4, PR-8, PR-11), thaumatin (PR-5), proteinase inhibitors (PR-9), ribonuclease 
like defensin (PR-10), lipid transfer protein (PR-14), NBS-LRR proteins, glycopro-
teins, WRKY proteins, and catalases.

Plants, in order to survive through biotic stresses, have evolved more sophisti-
cated mechanisms in order to perceive external signals which allow them to prepare 
for an optimal response (Fig. 7.1). Small endogenous, low-molecular-weight mol-
ecules commonly known as phytohormones regulate the defensive response against 
biotic stresses. The phytohormones, such as salicylic acid (SA), jasmonic acid (JA), 
ethylene (ET), abscisic acid (ABA), brassinosteroids (BRs), auxins, cytokinins 
(CKs), and gibberellins (GAs), respond to stress via synergistic and antagonistic 
actions often referred to as signaling cross talk (Mauch-Mani and Mauch 2005). 
Over the years, analysis done using large-scale transcriptome analyses has sup-
ported the existence of cross talk between various signaling networks (Davletova 
et al. 2005). Apart from defense signaling, these phytohormones are also regulators 
of growth, development, and physiological processes. These phytohormones act 
while maintaining a balance in highly complex network in response to development 
and environmental cues. Like animal hormones, these phytohormones are trans-
ported from one location to the other for mediation in various processes (Davies 
2010). Under stress conditions, the production, distribution, or signal transduction 
of these hormones is affected leading to morphological, molecular, and physiologi-
cal changes which prepare plants to withstand the stress conditions (Eyidogan et al. 
2012). The phytohormones, being lowest level transducers, lead to the stress signal 
activation of signaling cascade which further initiates the response mechanism 
(Harrison 2012).

We have summarized the roles of phytohormones in various signaling mecha-
nisms, in response to various stress responses. Further, it also focuses on the crucial, 
delicate, and complex cross talk of these phytohormones in response to various 
biotic stresses, in various plant species. This chapter would assist plant biologist in 
further exploring the crucial role of phytohormones in response to biotic stresses.
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7.2  Role of Phytohormones in Biotic Stress via Different 
Signaling Pathways

7.2.1  Brassinosteroids (BRs)

One of the most ubiquitously present steroids, brassinosteroid (BR), is an endoge-
nous plant growth-promoting hormone. Initially reported as organic extract 
(Mitchell et al. 1970), brassinosteroids (BRs) are localized in almost all parts of the 
plants, namely, seeds, fruits, young vegetative tissues, and pollens, and are known 
to affect cellular proliferation and expansion (Clouse and Sasse 1998; Sakurai et al. 
1999). The BRs on the basis of the number of carbons in their structure are classi-
fied as C27, C28, and C29 (Vardhini 2013a, b). Till date, 60 BR-related compounds 
have been identified (Haubrick and Assmann 2006), but brassinolide (BL), 
28- homobrassinolide (28-HomoBL), and 24-epibrassinolide (24-EpiBL) are most 
widely known BRs, which are used in various physiological and experimental 
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studies (Vardhini et al. 2006). These steroids are either present in free form or in 
conjugation with various sugars or fatty acids (Bajguz and Hayat 2009). BRs are 
involved in the vascular differentiation (Ashraf et al. 2010) and xylem formation in 
epicotyls (Zurek et  al. 1994). Analyses suggest the role of BRs in providing the 
resistance against various biotic and abiotic stresses (Bajguz and Hayat 2009; 
Gomes 2011). In rice and tobacco, BR treatment has been observed to enhance the 
disease resistance (Nakashita et al. 2003). Thus, it has been hypothesized that BRs 
by triggering the accumulation of apoplastic H2O2 further upregulated the antioxi-
dant system, thereby inducing the stress tolerance in plants (Jiang et al. 2012). A 
cell surface receptor kinase, brassinosteroid-insensitive 1 (BRI1), is known to per-
ceive the BRs in plants. Various bioassays have revealed that BRs bind to the extra-
cellular domain of the BRI1 receptor, which is plasma membrane-localized 
leucine-rich repeat (LRR) receptor of a serine/threonine (S/T) kinase (Friedrichsen 
et al. 2000). This binding initiates the dissociation of BRI1 from the negative regu-
lator BIK1, activation of the co-receptor BRI1-associated receptor kinase 1 (BAK1) 
and its heterodimerization with BRI1, phosphorylation of the BRI1-interacting sig-
naling kinase (BSK1), and activation of the BSU1, a protein phosphatase (Lin et al. 
2013). The signal is then transmitted to the cytoplasm where a protein kinase, 
brassinosteroid-insensitive 2 (BIN2), is inhibited, which is the negative regulator of 
BR biosynthetic pathway (Fariduddin et  al. 2014), and transcription factors like 
BZR1 and BES1/BZR2 are activated. These transcription factors move to the 
nucleus and activate BR-responsive genes by binding to their promoter. Further 
BAK1 is involved in the regulation of microbe-induced cell death (Kemmerling 
et al. 2007), and even interacts with various pattern recognition receptors (PRRs), 
and is a part of PAMP-triggered immunity (PTI) (Fradin et  al. 2009; Chaparro- 
Garcia et al. 2011). It is also suggested that BAK1 can function in control of cell 
death and innate immunity independent of BR (Chinchilla et al. 2009). The com-
plexity of BR response pathway was studied in Arabidopsis and the authors demon-
strate that this key player can act antagonistically and synergistically. Researchers 
fine-tuned the BR pathway and concluded that BAK1 acts as a mediator for syner-
gistic activities of BR on PTI but also supports a scenario that BR can control plant 
defense independent of BAK1 (Belkhadir et al. 2012). Lozano-Duràn et al. (2013) 
and Shi et al. (2013) further provided insights into BR suppression of PTI responses 
independent of BAK1. Another feather to BR cap of signaling molecules was added 
as the study conducted by Lin et al. (2013) identified the receptor-like cytoplasmic 
kinase Botrytis-induced kinase 1 (BIK1) which shares the BR and PTI pathways.

BRs were regulated in plants leading to the various responses depending upon 
various environmental conditions. Studies in recent past have highlighted that exog-
enously given BRs exerted a positive effect on the resistance of various crops to a 
broad range of pathogens (Khripach 2000). This was further supported in small- 
scale disease trials by Nakashita et al. (2003). The group reported a varying (local, 
as well as systemic) positive effect of BL on disease tolerance to distinct leaf patho-
gens in tobacco and rice plants. Exogenous BR application was also shown to con-
fer resistance to barley from several Fusarium diseases (Ali et al. 2013). Apart from 
these positive effects, BR can have negative impact on disease resistance. It was 
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seen that exogenous BL application either could not alter resistance of Arabidopsis 
to Pseudomonas syringae pv. tomato (Pto) and Alternaria brassicicola (Albrecht 
et  al. 2012) or makes rice hypersusceptible to the Pythium graminicola and 
Meloidogyne graminicola, the root pathogens (De Vleesschauwer et al. 2012; Nahar 
et al. 2013). In the case of P. graminicola, it was even recommended that the patho-
gen seizes the host BR machinery, as virulence factors to promote infection (De 
Vleesschauwer et  al. 2012). Thus, BRs are an important class of regulators that 
merge immune system function with normal growth and developmental programs.

The narrow range of BR concentrations can also influence the production of ROS 
(Baxter et al. 2014). BR-induced ROS production plays an important role in stress 
tolerance. BRs can also stimulate antioxidant production and scavenge ROS (Bajguz 
and Hayat 2009; Fariduddin et al. 2013). They can also influence disease resistance 
by fine-tuning secondary metabolite production. The repressive effect of BZR1 and 
BES1 on glucosinolate production in Arabidopsis was observed (Guo et al. 2013).

BR therefore plays multifaceted roles in plant-pathogen interactions (Fig. 7.2), 
ranging from modulation of PAMP perception, activation of stress-responsive gene, 
fine-tuning oxidative metabolism, and production of secondary metabolites. 
However its role in making the plant resistance or susceptible depends on plant- 
attacker combination. It further emphasizes the fact that plant hormone interaction 
in pathogen defense cannot be generalized (Bruyne et al. 2014). Recently, BRs are 
found to be the master regulators of gibberellic acids (GAs), which are related to the 
growth and development of vascular plants (Unterholzner et al. 2015). In rice, GA 
metabolism is found to be modulated by the BRs (Tong et  al. 2014). Following 
stress perception, BRs can cross talk among defense signaling pathways with a 
range of hormones, such as SA, JA, ABA, auxins, and GA.

7.2.2  Abscisic Acid (ABA)

The phytohormone, abscisic acid (ABA), plays prominent role in various aspects of 
plant growth which include germination, dormancy, and seed development. Several 
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analyses have shown its role on developing stress response in plants towards abiotic 
and biotic stresses. ABA accumulates after infection and can have positive and neg-
ative effect on defense responses depending on the environmental conditions. It 
mostly acts antagonistically with SA/JA/ethylene making the plant susceptible 
against disease and herbivore attack. ABA promotes stomatal closure as a physio-
logical response to various environmental stresses. ABA thus induces preinvasive 
defense by inhibiting the entry of pathogens through these passive ports (Ton et al. 
2009). This is proven by the analysis of susceptibility toward Magnaporthe grisea 
in rice plant due to ABA application (Koga et al. 2004). It has been found that viral 
infection in plants leads to the increased ABA concentration in tobacco (Whenham 
et al. 1986). Plants react to the infection once it is established. SA, JA, and ethylene 
might not be activated during initial exposure to stress, but at this time ABA acts as 
a key endogenous factor in playing important role by inducing stomatal closure. It 
can even antagonize their induction, thereby modifying future responses against 
potential pathogens. Postinfection, ABA signaling cascade initiates events to 
strengthen the resistant phenotype through callose accumulation to prevent patho-
gen invasion in attacked plants. The rise in ABA concentration has been shown to 
have negative effect on the ET production (LeNoble et al. 2004); they thus interact 
in antagonistic manner in plant-pathogen interaction. Similar response has been 
observed in case of jasmonic acid (JA) (Staswick et al. 1992). Overall, by interfer-
ing with the biotic stress signaling, ABA affects the resistance of plants toward vari-
ous diseases in negative manner (Mauch-Mani et al. 2005). Exogenously applied 
ABA increased the virulence of P. syringae pv. tomato on Arabidopsis plants (de 
Torres et al. 2007). Furthermore, application of ABA suppressed the transcript accu-
mulation of defense genes like PDF1.2 (plant defensin 1.2), CHI (basic chitinase), 
HEL (hevein-like protein), and LEC (lectin-like protein), thereby increasing suscep-
tibility of Arabidopsis plants to the fungus, Fusarium oxysporum (causal agent of 
wilt), and to the bacteria, Erwinia chrysanthemi (causal agent of bacterial wilt), 
infection (Asselbergh et al. 2008). Similarly the mutants defective in ABA biosyn-
thesis and perception demonstrate the negative effect of ABA in disease resistance. 
For example, tomato mutants showed reduced pathogen growth after B. cinerea 
infection (Audenaert et  al. 2002). Similarly, ABA-deficient Arabidopsis mutant, 
aba1-1, induced HR-like defense response at the site of Peronospora parasitica 
inoculation. Such response was not observed in wild-type plants (Mohr and Cahill 
2007). ABA-deficient mutant, aba3-1, failed to close stomata upon exogenous 
application of pathogen-derived elicitors suggesting the involvement of ABA- 
mediated signaling in closure of stomata. Evidences suggest that exogenous appli-
cation of ABA bestowed resistance against fungal pathogens in Arabidopsis (Adie 
et al. 2007) and barley plants (Wiese et al. 2004). The increased resistance observed 
in these plants is because of reduced pathogen colonization as a result of ABA- 
mediated callose biosynthesis or inhibition of its degradation (Jacobs et al. 2003; 
Rezzonico et al. 1998). Also, there are evidences that show correlation between the 
nitrogen status and ABA levels in plants (Wilkinson and Davies 2002). Therefore, 
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ABA in plants, not only associated with growth and development but also with vari-
ous levels of stress signaling.

7.2.3  Ethylene (ET)

In plants, the growth, development, and tolerance to many biotic stresses are depen-
dent upon various hormones including ethylene. It regulates the flower fertilization, 
senescence, fruit ripening, and organ abscission in various plant species. The per-
ception and signal transduction of ethylene are conserved among the plants, which 
show its relevance in the plant development and survival mechanisms. The ethylene 
induced during the stress acts as trigger due to its autocatalytic mechanism of ethyl-
ene synthesis in a stressed plant. The ethylene production is controlled by mitogen- 
activated protein kinase (MAPK) phosphorylation cascades (Takahashi et al. 2007). 
The ethylene pathway is a well-studied pathway in plants. It requires 
S-adenosylmethionine (SAM) which is also a precursor in other pathways and is 
widely found in plant tissues. SAM is converted to 1-aminocyclopropane-1- 
carboxylic acid (ACC) and 5′-methylthioadenosine (MTA) in the reaction catalyzed 
by ACC synthase in a rate-limiting step of the pathway. During the high rate of 
ethylene production, levels of l-methionine remain largely unchanged due to the 
presence of 5′-methylthioadenosine (MTA) (Abeles et  al. 1992). The ACC pro-
duced is oxidized to ethylene and various other products in combination with oxy-
gen, catalyzed by ACC oxidase. The presence of ethylene leads to the induced 
expression of gene encoding ethylene response sensors 1 and 2 (ERS1, ERS2) and 
ethylene resistant 2 (ETR2) proteins. Ethylene is sensed by five ER-localized recep-
tors which are divided into two subfamilies. The subfamily I includes ethylene 
response 1 [ETR1] and ethylene response sensor 1 [ERS1], while subfamily II 
includes ETR2, ERS2, and ethylene insensitive 4 [EIN4]. Ethylene signaling also 
includes some downstream elements like constitutive triple response (CRT1), ethyl-
ene insensitive 2 (EIN2), ethylene insensitive 3 (EIN3)/ethylene insensitive-like 
protein 1(EIL1), and ethylene response factors (ERFs). The major factors governing 
ethylene signaling are ethylene response factors (ERFs). However, it is suggested 
that ethylene insensitive 3 (EIN3) induces ERF 1 gene expression to activate defense 
response. Thus ERF1 acts downstream of EIN3 (Solano et al. 1998). Several ERF 
subfamily members are associated with biotic stress tolerance, for example, it has 
been shown in rice and Arabidopsis that ERF1 binds to GCC box (AGCCGCC) in 
promoters of biotic stress-inducible genes (Xu et al. 2007; Cheng et al. 2013). In 
rice ERF 922 has been shown to be a negative regulator of defense against rice blast 
fungus Magnaporthe oryzae (Liu et al. 2012). It was observed that overexpression 
of ERF 922 enhanced ABA levels in rice which could be the cause of enhanced 
susceptibility to fungus (Koga et al. 2004). In several cases, ERFs are associated 
with long-distance leaf-to-leaf and leaf-to-root signaling to equip the plant against 
future pathogen attack (Dey et al. 2014). In a study conducted on rice roots, treat-
ment with Pseudomonas isolate EA 105 induces the expression of ERF1 in distal 
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uninfected leaves and enhances resistance to M. oryzae compared to noninfected 
plants (Spence et al. 2014). Further in the absence of ethylene, EIN2 is repressed by 
constitutive triple response (CTR1). The repression of EIN2 is relieved by ETR1 
upon perception of ethylene. CTR1 interacts and phosphorylates the cytosolic 
C-terminal domain of EIN2 and prevents EIN2 from signaling in absence of ethyl-
ene (Ju et al. 2012). The rate of ethylene biosynthesis has been found to be enhanced 
under the biotic stress (Van Loon 1984; Abeles et al. 1992). Interestingly, ethylene 
signaling mechanism in plants shows novel negative feedback mechanism. This is 
because ethylene is essential for plant response to the stress and prepares the plants 
for tolerance mechanism which is essential for their survival. But excessive ethyl-
ene production due to persisting stress conditions leads to the inhibition of growth 
and development in plant, which if continued for long duration leads to the plant 
death. Hence, it is considered that a tight regulation of ethylene homeostasis is 
maintained for the plant survival during stress conditions and its recovery for growth 
later. Ethylene interacts with other phytohormones like jasmonic acid and salicylic 
acid and affects the signaling response. It may affect SA-mediated defense responses, 
positively and negatively depending on the different lifestyles of the pathogens 
(Derksen et al. 2013). The gain of function and loss of function of ethylene-related 
genes affect the susceptibility toward pathogens in plants. In rice, overexpression of 
ACS2 (1-aminocyclopropane-1-carboxylic acid synthase) resulted in high level of 
ethylene and increased resistance to M. oryzae and R. solani (Helliwell et al. 2013). 
RNAi silencing of OsEIN2b in rice plants increased susceptibility to M. oryzae 
infection (Seo et al. 2011).

7.2.4  Jasmonates

Jasmonates are one of the most widespread class of phytohormone in the plant king-
dom. Jasmonic acid was first of all isolated as methyl jasmonate from the essential 
oil of Jasminum grandifloram. Vick and Zimmermann (1984) provided insights into 
biosynthesis of JA.  The family, jasmonates, includes various other compounds, 
namely, 12-oxophytodienoic acid (12-OPDA), methyl jasmonate (MeJA), and 
amino acids conjugated to the jasmonic acid such as JA-leucine and JA-isoleucine. 
Jasmonic acid is the most studied and characterized member of the jasmonate fam-
ily in plants (Avanci et al. 2010). The members of the jasmonate family have been 
analyzed for their role in development of fruits, senescence, reproductive process, 
various secondary metabolisms, and direct and indirect defense responses against 
pathogen (Wasternack 2007). Methyl jasmonate (MeJA) has been earlier shown to 
be involved as signaling molecule which mediates the intra- and interplant commu-
nications, thus altering the plant defense responses (Seo et  al. 2011; Wasternack 
2007). This is due to the ability of MeJA to diffuse through the membranes and its 
volatile nature. MeJA has also been observed to play major role in regulating the 
reproductive process in plants (von Malek et al. 2002). The biosynthesis and signal-
ing pathways of the jasmonate have been studied in detail in Arabidopsis and tomato 
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(Kazan and Manners 2008). Jasmonates play a role in the growth control, shoot and 
root tissue elongation, and floral bud formation (Maciejewska and Kopcewicz 
2003). Apart from that, jasmonates also contribute to the regulation of the biosyn-
thesis of many secondary metabolites such as phenylpropanoids, alkaloids, terpe-
noids, and antioxidants. During pathogen attack, especially necrotrophic fungal and 
bacterial infection, jasmonates lead to the expression of defense-related genes (Mei 
et al. 2006). JA biosynthesis has been found in the roots of the plants (Pedranzani 
et al. 2003), but evidence also suggests its presence in the leaves (Mueller et al. 
1993). In sorbitol-treated tomato plant, endogenous levels of OPDA, JA, and MeJA 
were observed in leaves (Abdala et  al. 2003). The activity of jasmonates is also 
associated with the slowing of activity of the photosynthetic apparatus. The hor-
mone also plays an important role against attack by herbivores like caterpillars, 
mites, thrips, beetles, etc. The transcription factor JASMONATE INSENSITIVE/
MYC2 (JIN1/MYC2) plays an important role in JA-responsive gene expression. 
JA-regulated stress responses are also mediated by ethylene-responsive factors. The 
JA-responsive marker gene PLANT DEFENSIN 1.2 (PDF 1.2) is regulated by 
ethylene- responsive factors ERF1, ERF2, and ERF5. A repressor protein 
JASMONATE-JIM DOMAIN (JAZ) plays a prominent role in JA-mediated stress 
response. In the absence of active JA, JAZ proteins interact with transcription factor 
JIN1/MYC2 and inhibit expression of JA-responsive genes. Once the JA pathway is 
activated, i.e., JA-Ile binds to its receptor which is a F-box protein CORONATINE 
INSENSIVE 1 (CoI1) and mediates the 26 S-mediated degradation of JAZ, thereby 
allowing MYC2 to upregulate the expression of JA-responsive genes. Recent stud-
ies have also highlighted the fine-tuning of JA responses by MYC2. A posttransla-
tional modification of MYC2 at Thr 328 stimulates its transcription activity. The 
modified MYC2 is unstable and degraded by plant U-box protein (PUB 10), thereby 
facilitating turnover of MYC2 (Antico et  al. 2012). The model depicting above 
interactions is shown in Fig. 7.3.
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Fig. 7.3 (a, b and c) Role of JAZ and MYC2 in JA-responsive gene expression. In the absence of 
active JA, JAZ proteins interact with transcription factor JIN1/MYC2 and inhibit expression of 
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7.2.5  Salicylic Acid (SA)

SA is a plant phenolic compound synthesized by plants to regulate defense mecha-
nism against biotrophic and hemibiotrophic pathogens and is derived from the 
shikimate- phenylpropanoid pathway (Sticher et al. 1997). Detection of phytopatho-
gens stimulates the synthesis of SA. The pivotal role of salicylic acid in conferring 
disease resistance was first demonstrated in Arabidopsis and cucumber plants when 
levels of the hormone were detected prior to development of local and systemic 
resistance (Malamy et al. 1990). Since then its role in biotic stress has been estab-
lished in all plant species. Activation of SA pathway at the site of infection triggers 
a defense response in distal parts of the plant.

The constitutive SA accumulation often leads to reduction of plant fitness 
(Ishihara et al. 2008), by mobilizing resources and energy away from growth and 
reproductive process. Hence, its biosynthesis and signaling are under tight control 
of the cell. SA is synthesized in the chloroplast and then transported to the cytosol 
where it signals immune responses. The export of the hormone is mediated by a 
chloroplast membrane-localized member of the multidrug and toxin (MATE) trans-
porter family EDS5 (or SID1). Inside the cytoplasm, SA can be subjected to various 
modifications that usually render it inactive (Dempsey et al. 2011). These modifica-
tions are an important check to regulate the level of biologically active SA in the 
cytoplasm such as glucosylation of SA at its hydroxyl group generates a glucoside 
(SAG), whereas glucosylation at its carboxyl group produces an ester (SGE). SAG 
moves to the vacuole and behaves as a nontoxic storage from which it can be hydro-
lyzed following pathogen attack to release free active SA. Methylation of SA pro-
duces methyl SA (MeSA) which is a mobile phloem signal that travels from the 
infected leaf to the systemic tissues, where it activates defense mechanism after 
being converted back to SA (Fig. 7.4) (Park et al. 2007). Formation of SA-amino 
acid conjugates is another adjustment strategy (Dempsey et al. 2011) as salicyloyl- 
aspartate (SA-Asp) has been identified in plants. There are a number of physiologi-
cal processes that are influenced by SA. In plants, SA is required for the initiation 
of various stress symptoms and hypersensitive-response (HR)-like cell death. The 
PR genes are a diverse class of genes encoding antimicrobial proteins and increas-
ing resistance against broad spectrum of pathogens. The expression of various 
pathogenesis-related (PR) proteins encoding genes has also been observed with the 
exogenous application of the SA (Malamy et  al. 1990). SA is also required for 
establishing the systemic acquired resistance (SAR) with its accumulation in the 
distant tissues in the condition of stress in plants (Vernooij et  al. 1994). Earlier, 
significantly high number of leaves and increased biomass have been observed in 
wheat seedlings, when treated with SA (Hayat et al. 2005). Various analyses pro-
vided an indication that SA is related to several processes, and therefore it is 
assumed that it has a role in biotic stress conditions. Yalpani et al. (1994) have sug-
gested that exposure to ozone and the ultraviolet light leads to the accumulation of 
SA. The ozone induces oxidative stress levels; thus, SA induces antioxidant defenses 
in plants showing it may have some role in other abiotic stress conditions. Also, 
analysis suggests that there is an overlap of ozone and pathogen-induced resistance 
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pathways which confirms the role of SA in plants (Sharma et al. 1996). SA leads to 
the induced expression of receptor protein kinase (RPK) which is known to initiate 
the response to the signal (physical or chemical) in plants (Bassett et  al. 2005). 
Further, SA has been hypothesized to be the direct or indirect regulator of calcium- 
mediated signaling pathways. This is evident from the analysis in which SA was 
observed to induce expression of certain calcium-dependent protein kinases 
(CDPKs) in plants (Leclercq et al. 2005). Owing to the role of SA in inducing many 
crucial genes in signaling pathways, it is assumed that SA is a crucial part of the 
complex signaling transduction networks. The members of NON-EXPRESSOR OF 
PR GENE (NPR family) are proposed SA receptors. The implementation of SA 
action is monitored through action of SA marker gene PR-1 whose activation 
requires the positioning of the SA-dependent transcriptional enhanceosome to its 
promoter (Rochon et al. 2006). The enhanceosome contains the members of TGA2 
clade of bZIP transcription factors (Zhang et al. 2003) and the transcriptional coacti-
vator (NPR1) (Rochon et al. 2006). Recent studies provide insights into mode of 
action of this SA receptor-NPR1, which is central to activation of SA defense genes. 
TGA2 is a transcriptional repressor and its inactivation is brought about by NPR1. 
The N-terminal region of NPR1 contains a BTB/POZ domain that interacts with 
TGA2 repression domain and negates its function (Boyle et al. 2009). NPR1 har-
bors in its C-terminal region a transactivation domain which contains two cysteines 
(Cys521 and Cys529) required for the activating function of the enhanceosome 
(Rochon et al. 2006). NPR1 binds specifically to SA, which in turn regulates con-
formation of NPR1 by depolymerizing it to a dimer. This causes release of the 
C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ 
domain. SA binding to NPR1 relieves sequestration of NPR1 transactivation domain 
(Fig. 7.5). Further, nearly 30 SA-binding proteins (SABs) with variable affinities for 
SA have been identified. SA signals its effects by interacting with these SABs. SA 
research is even benefitting agriculture as pretreating plants with high concentration 
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of SA can initiate defense response which can later be activated rapidly by subse-
quent infection (Dempsey and Klessig 2017).

7.2.6  Gibberellin (GA)

The plant phytohormone, gibberellins, is one of the large families of diterpenoid 
compounds. It is not only produced by higher plants but also by fungi and bacteria 
(MacMillan 2001). It is widely known to promote some of the essential processes 
related to floral development, flowering time, elongation of stem, trichome develop-
ment, and seed germination (Davies 2010). Various environmental stimuli lead to 
the change in the GA concentrations in plants which further affects various pro-
cesses (Davies 1995). The GAs are synthesized in the plastids by methylerythritol 
phosphate pathway from trans-geranylgeranyl diphosphate. Several analyses sug-
gest that GA as a signaling component plays an important role in the disease suscep-
tibility and resistance in plants. The first report for the role of GA came from the 
work of Zhu et al. (2005). They demonstrated that one of the capsid proteins of the 
rice dwarf virus interacts with plant ent-kaurene oxidases resulting in decreased GA 
levels in the infected plants. The DELLA proteins are a class of nuclear growth- 
repressing proteins. They are the negative regulators of GAs and have been found 
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Fig. 7.5 SA binding to NPR1 relieves sequestration of NPR1 transactivation domain. The 
N-terminal region of NPR1 contains a BTB/POZ domain that interacts with TGA2 repression 
domain and negates its function. NPR1 harbors in its C-terminal region a transactivation domain 
which contains two cysteines (Cys521 and Cys529). Binding of SA to the cysteines in the transactiva-
tion domain disrupts its interaction either due to steric hindrance or SA-induced conformational 
change
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regulating the immune response modulated by JA and SA in plants. DELLAs pro-
teins regulate the balance of SA/JA signaling during plant immunity, supporting JA 
perception and/or signaling, and restricting SA biosynthesis and signaling (Navarro 
et al. 2008). These proteins have also been shown to regulate the expression of vari-
ous genes which are known for producing ROS detoxification enzymes (Achard 
et al. 2008). Thus, indirectly GAs can be assumed to play a role in the oxidative 
stress related to salinity and osmosis. GA signaling plays an important role in cell 
wall development and represses cell wall relaxation by altering the expression of 
xyloglucan endotransglucosylase/endohydrolases (XTHs) and expansins. Loosening 
of cell wall is undoubtedly important for cell growth, but it also allows pathogen 
entry and nutrient leakage. GA is also responsible for modification of carbon and 
energy metabolism and decrease production of antimicrobial compounds or increase 
nutrient efflux favoring microbes. DELLAs have been found to play an important 
role in plant immunity by regulating cell cycle-dependent expression of immunity- 
conferring genes. The rice mutants having defective GA receptors were found to 
accumulate high levels of GA and showed better resistance to fungus Magnaporthe 
grisea known for causing blast, than the wild types (Tanaka et  al. 2006). Under 
flooding conditions, rapid internode elongation takes place in plants. The elongation 
is the result of upregulation of ethylene response factor (ERF) domain proteins 
SNORKEL1 and SNORKEL2 which leads to the direct or indirect increase in the 
levels of GAs in plants (Hattori et al. 2009). Interestingly, the GA signaling path-
ways have been found to be modulated by other phytohormones (Fu and Harberd 
2003). Through many biological studies utilizing mutant lines and gain of function 
and loss of function and plants impaired in gibberellic acid signaling, it is observed 
that GAs are important regulators of plant growth including biotic stress (Colebrook 
et al. 2014). Exogenous application of GA in rice decreases resistance to the hemi-
biotrophic rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae 
(Qin et  al. 2013). Decreased level of GA by overexpressing a GA-deactivating 
enzyme in rice resulted in low levels of both salicylic acid and gibberellic acid, but 
the resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae was 
enhanced and reverse result was obtained by loss of function and plants became 
more susceptible (Yang et al. 2008). Similar to the classic defense hormones jas-
monic acid, salicylic acid, and ethylene, gibberellic acid acts as multifaceted regula-
tors of plant immunity. This depends upon the plant species and pathogen type and 
also on plant pathogen interaction (Bruyne et al. 2014).

DELLA proteins interact with transcription factors and regulate plant growth and 
development. Many groups have shown that DELLA proteins compete with JAZ, a 
transcriptional repressor of JA to bind to MYC2. Binding of DELLA proteins 
relieves MYC2 from JAZ, which is now free to enhance JA-responsive gene action. 
This increases resistance against necrotrophic pathogens (Navarro et  al. 2008). 
However, GA exerts its control as in the presence of GA, DELLA proteins are 
degraded, and JAZ proteins bind to MYC2, thereby inhibiting JA-responsive gene 
action. Figure 7.6 explains this interaction. Therefore GA may disable JA-mediated 
stress response against pathogen invasion. DELLAs seem to positively mediate 
JA-responsive gene expression by blocking JAZ proteins (Hou et al. 2010) and also 
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by acting as JA-responsive regulators. To defend against pathogens, plants may co- 
opt for a JA signaling cascade to regulate DELLA levels in planta as a DELLA 
protein RGL3 is also known to be induced in a MYC2-dependent fashion by 
JA. DELLA proteins therefore form an important node of multiple hormone signal-
ing pathways as they are main centers controlling multiple environmental signals 
and developmental cues. DELLA proteins also interact with BR-regulatory TF 
brassinazole resistant 1 (BZR1). They inhibit BR signaling cascade by sequestering 
BZR1 into inactive protein complexes. This in turn regulates numerous defense- 
related genes controlled by BZR1 (Wang et al. 2014).

7.2.7  Cytokinins

The role of phytohormone, cytokinins, has been poorly understood in plants 
although there are certain reports which show its role in defense response against 
some pathogens. Apart from that, its role has been shown in the growth of root, 
shoot and inflorescence, seed development, senescence in leaves, and stress response 
(Muller and Sheen 2007). The cytokinins when applied with auxins have been found 
to trigger callus differentiation and induce cell proliferation in shoots. It also con-
tributes to the sink strength, nutrient translocation, and grain yield of various plants. 
In developing tissues like cambium, shoot apex, and root tips, cytokinins have been 
found in abundance. Whole genome expression analysis of Arabidopsis infected 
with Plasmodiophora brassicae (known to cause clubroot disease in plants) showed 
downregulation of gene playing role in cytokinin homeostasis, namely, cytokinin 
synthases and cytokinin oxidases/dehydrogenases, which shows its role in the club-
root disease in Arabidopsis (Siemens et al. 2006). The phytohormone cytokinins 
have also been found to regulate the nitrogen metabolism in plants by enhancing the 
activity of nitrate reductase (Sykorová et al. 2008). The activities of the enzymes 
involved in the photosynthesis have been observed to be enhanced by the root- 
derived cytokinin signals (Sakakibara et  al. 2006). In plants, cytokinins are per-
ceived through a well-conserved multistep histidine-to-aspartate phosphorelay 
system which is known as two-component signaling systems (Schaller et al. 2011). 

In the absence of GA

JAZ

MYC 2

G-box JA responsive gene

In the presence of GA

GA
DELLA

JAZ

MYC 2

G-box JA responsive gene

DELLA

Degradation of DELLA

Fig. 7.6 Control of GA over JA-responsive gene action. In absence of GA, the DELLA proteins 
are stabilized and bind to JAZ. This frees MYC2 which can activate JA-responsive gene action. In 
presence of GA, DELLA proteins are degraded, JAZ proteins binds to MYC2, and JA-responsive 
gene action is blocked
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The two-component system in plants is a well-studied and characterized signaling 
system specifically in Arabidopsis and rice. It is comprised of histidine-containing 
phosphotransfer proteins, receptors, and response regulators (Argueso et al. 2010). 
Specifically, type B response regulator, which functions as a transcription factor, 
regulates the expression of genes regulated by cytokinins. Analyses also suggest 
that cytokinins are the endogenous negative regulator of senescence (Singh et al. 
1992). In Glycine max, the decrease in the cytokinin content has been observed with 
the onset of senescence (Noodén et al. 1990). Similar results have also been observed 
in Arabidopsis in high-throughput analysis (Breeze et al. 2011). These results sug-
gest that cytokinins delay senescence in plants. Cytokinins have been proposed to 
induce synthesis and accumulation of phytoalexins in SA-independent manner. The 
hormone accumulated post pathogen attack and also helps the plant to cope against 
infection by affecting the priming response through SA-mediated signaling and 
inducing PR gene expression (PR-1, PR-3, PR-4, PR-5). Further a component of 
CK signaling pathway type B, ARR2 is required to regulate the activity of SA recep-
tor NPR1 (O’Brien and Benkova 2013). The role of cytokinin in plant defense 
response is depicted in Fig. 7.7.

7.2.8  Auxins

Auxins are low-molecular-weight organic compounds, and it constitutes one of the 
most important and diverse groups of phytohormone generally found in all the 
plants. They are involved in large number of developmental processes such as shoot 
architecture control, vascular development and lateral root formation by controlling 

Pathogen 
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Phytoalexin
accumulation

SA

Plasma Membrane

NPR1

PR response

Nucleus

Type A 
ARR2

PR genes

Fig. 7.7 Role of cytokinin in plant defense response. Arrows indicate positive regulation, and 
blocked arrows indicate negative regulation
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the cell division (Woodward and Bartel 2005). Auxins have also been shown to 
control the senescence, respond to various pathogens, and develop abiotic stress 
response in plants (Fu and Wang 2011; Wang et al. 2010). Apart from that, it also 
regulates the formation of fruits (De Jong et al. 2009). Indole acetic acid (IAA) is 
one of the most abundant endogenous auxins in plants and is synthesized via tryp-
tophan (Trp)-independent and Trp-dependent pathways (Zhao 2010). In Arabidopsis, 
rice, and soybean, auxin stimulates the expression of auxin response genes (Javid 
et al. 2011). With the mediations and cross talk with other phytohormones, auxins 
play an important role in the biotic and abiotic stress response (Fahad et al. 2015). 
Apart from its positive role, auxins have been established to weakening of the 
defense response in plants. Analysis shows that its exogenous application promotes 
the diseases caused by Pst DC3000, Pseudomonas savastanoi, and Agrobacterium 
tumefaciens (Navarro et al. 2006; Chen et al. 2007). The signaling initiated by aux-
ins regulated the response of cell to varied levels of auxins that are formed by auxin 
metabolism and transport. The TIR1/AFB family receptors are known for the auxin 
signaling (Dharmasiri et al. 2005; Kepinski and Leyser 2005). The phytohormone 
auxins can move long distances from highly active young tissues to the roots through 
the phloem (Marchant et al. 2002). Apart from that, it also moves to the short dis-
tances from cell to cell and is regulated by specific influx and efflux carrier proteins 
(Muday and Rahman 2008). Under various environmental stress conditions, inverse 
interactions between ROS and auxins have been observed, but the auxin-responsive 
gene is still unidentified. The impact of oxidative stress has been observed in auxin 
stability due to oxidization of IAA via peroxidase activity (Kawano 2003). Auxin 
acts in a mutually antagonistic fashion with SA and shares many commonalities 
with JA during plant defense. Recent evidences suggest that upon infection some 
pathogens either produce auxin themselves or increase auxin biosynthesis as a part 
of the plant’s defense and developmental machinery (Valls et al. 2006; Kazan and 
Manners 2009; Bielach et al. 2017).

7.3  Cross Talk in Various Phytohormones

All the processes and responses in plants are the result of interplay of many genes 
and gene families suitably orchestrated in a network. In plants, growth, develop-
ment, and response to various environmental cues go hand in hand. Various phyto-
hormones are known to play important role in almost all the process through the 
modulation of genes. Further, through the balancing of phytohormones, plants 
maintain homeostasis and adapt to the environmental changes. This is only possible 
by an efficient and systemic cross talk between various phytohormones. SA, JA, and 
ET work together in a harmonious manner with BR, auxin, cytokinin, and GA in 
mediating plant response to biotic challenges. Plant defense response doesn’t 
depend solely on any one hormone rather all the phytohormones work with each 
other regulating defense response positively or negatively (Fig. 7.8). There are evi-
dences which suggest JA and SA signaling intersect in a negative manner against 
necrotrophic pathogens and herbivores (Glazebrook 2005). NPR1 is a key 
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intersecting player in the antagonistic talks of SA and JA. SA assisted in downregu-
lation of JA-responsive genes like lipoxygenase 2 (LOX2), plant defensin 1.2, and 
vegetative storage protein (VSP). This suppression was abolished in npr-1 mutants. 
The WRKY transcription factor 70 family also plays prominent role in antagonistic 
interactions of SA and JA.  The recombinant WRKY-70 overexpressing line dis-
played constitutive responsive expression of PR genes and repression of 
JA-responsive PDF1.2 (Li et  al. 2004). Similar studies in mpk4 (Map Kinase 4) 
mutants of Arabidopsis proved antagonistic interactions of SA and JA (Petersen 
et al. 2000). A few reports also prove their synergistic interactions.

JA and ET work together in a synergistic manner and regulate synthesis of 
defense genes postinfection. Both the phytohormones work cooperatively to induce 
or stabilize EIN3 and help the plant against necrotrophs by developing root hairs 
(Zhu et  al. 2011). The synergy of JA interaction was observed in tomato plants 
where genes encoding proteinase inhibitors were induced in response to wounding 
(O’Donnell et al. 1996). Their cooperative action is even required for induction of 
ERF1-induced expression of PR genes (Lorenzo et  al. 2003). Their antagonistic 
actions are also proved against insects and herbivores. The JA-activated MYC2 
represses the downstream functions of EIN3, and in a similar fashion, MYC2 inhib-
its JA-regulated genes.

Auxins are known as key players in regulating plant growth and development, 
but several evidences suggest that auxins advance disease susceptibility and 

Fig. 7.8 Cross talk of phytohormones in biotic stress tolerance. ABA, SA, JA, and ET are key 
players in stress response. GA pathway produce DELLAs as an intersecting point. Auxins and CK 
pathway participate in biotic stress response in a SA-dependent manner. Arrows indicate positive 
regulation, and blocked arrows indicate negative regulation
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resistance against biotic challenges requires repression of auxin signaling. SAR 
reduces auxin-responsive genes. The treatment of Arabidopsis plants with a SA 
analog benzothiadiazole S-methyl ester (BTH) caused repression of auxin-respon-
sive genes (Wang et al. 2007). Furthermore, SA signaling suppresses expression of 
transport inhibitor resistant 1 (TIR1) and auxin signaling F-box genes (AFB) and 
stabilizes auxin repressor protein (AUX/IAA) which represses further auxin action.

The pivotal role of cytokinins in biotic stress response has been demonstrated by 
several groups (Reusche et al. 2013; Wang et al. 2007). Recombinant Arabidopsis 
plants with stabilized CK levels displayed improved resistance against hemibiotro-
phic pathogen Verticillium longisporum (Reusche et al. 2013). CK and SA signaling 
cascades intersect to regulate plant defense as it has been seen that SA defense 
responses are promoted by cytokinin-activated transcription factor (Wang et  al. 
2007). The cooperativity between SA and CK was also observed in rice plants as 
increased resistance was observed against rice blast fungus in an Os NPR1- and 
WRKY 45-dependent manner (Jiang et al. 2013). GA and JA also interact as DELLA 
proteins are known to interact with key repressors of JA signaling JAZ1, thereby 
preventing JA-mediated suppression of transcription. JA is also known to regulate 
the expression of repressor of GA1–3 (RGL3), which positively regulates 
JA-mediated response against necrotrophs by competing with MYC2. BRs can 
cross talk among defense signaling pathways with a range of hormones such as SA, 
JA, ABA, auxins, and GA. BR is known to increase resistance against pathogens in 
a SA dependent as well as independent manner. It also negates JA-induced resis-
tance in rice plants. BRs can also cross talk with auxins, and this BR-auxin bidirec-
tional interplay can have effects on BR signaling cascade in disease and resistance. 
BR is also known to interact with GA.  It suppresses GA biosynthesis genes and 
activates GA repressor genes. Known interactions also exist between BZR1 tran-
scription factor and DELLA proteins further mediating cross talk between BR and 
GA.

There are several evidences which validate the cross-talk hypothesis of the plant 
phytohormones which seems to be true in the sense that plants maintain a critical 
balance between growth and environmental response in which all the phytohor-
mones play important role. In conclusion, this is just the beginning of unraveling the 
complex phytohormones signaling cascades. The dissection of plant immunity web 
comprising of different hormones will help to understand the roles played by each 
one of them both as an antagonistic and synergistic way. So, elucidating the mecha-
nisms of plant hormone interaction and solving the plant immune network will help 
fundamental understanding of how plants comprise of orchestrated immune system 
function. The phytohormone intricate web may be a target for crop improvement. 
The yield may be increased by the disease resistance plants by transgenic approaches. 
The methods employed will comprise of either strengthening resistance of signaling 
pathway by modulating the antagonistic pathway or synergistic pathways.
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Abstract
Plants are constantly challenged by a variety of biotic and abiotic stresses. To 
combat these challenges, plants have developed intricate mechanisms to perceive 
external signals and respond with the proper physiological and morphological 
changes. Generally, plants regulate the expression of many stress-related genes 
by activating or repressing their transcription upon signal perception and trans-
duction of the external stimuli. The WRKY transcription factors comprise a large 
family of plant-specific zinc-finger-type regulatory proteins and regulate many 
plant defense responses to diverse biotic and abiotic stresses. WRKY proteins 
possess either one or two WRKY domains, a 60-amino-acid region that contains 
the amino acid sequence WRKYGQK, and a zinc-finger-like motif. In spite of 
the strong conservation of their DNA-binding domain, the overall structures of 
WRKY proteins are highly divergent and can be categorized into distinct groups, 
which might reflect their different functions. Based on the number of conserved 
WRKY domains and the features of the zinc-finger motif, the WRKY superfam-
ily can be divided into three distinct groups: I, II, and III. Previous studies have 
demonstrated that WRKY transcription factors participate in regulating defense 
gene expression at various levels, partly by directly modulating immediate 
downstream target genes, by activating or repressing other TF genes, and by 
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regulating WRKY genes. WRKY proteins also seem to be involved in other 
plant-specific processes, such as trichome development and the biosynthesis of 
secondary metabolites. In this chapter, we will focus our attention to the role of 
WRKY TFs in plant defense response.

Keywords
Biotic stress · Plant defense · Transcription factor · WRKY · Zinc-finger protein

8.1  Introduction

The global climate change leads to the dynamic interaction between climatic and 
biological factors. It is not only confined up to modification of physiology and resis-
tance of plants, but rather it also modifies the rates and stages of pathogen develop-
ment, which will ultimately lead to the shifting of host-pathogen physiological 
interactions. Pathogen would be following the hosts and may infect vegetation of 
natural plant communities which were previously not exposed to the more aggres-
sive strains. Therefore, new combinations of species are evolving. So the emphasis 
is shifted to develop new strategies to cope up with these biotic constraints in pres-
ent scenario. However, the nature orchestrated by plants with an inherent defense 
system can be generally divided into two levels: the first is PAMP-triggered immu-
nity (PTI), which confers resistance to most pathogens, and the second begins in the 
cytoplasm and mainly relies on the recognition of microbial effectors which is 
called effector-triggered immunity (ETI). Bostock (2005) reported that both PTI 
and ETI activate local as well as systemic defense responses, modulated by jas-
monic acid (JA) and salicylic acid (SA). Activation of these two pathways exten-
sively shares downstream signaling pathway, which in turn induces expression of 
defense gene and their corresponding defense responses (Tsuda et al. 2013). The 
response leads to adaptive plasticity of plants, which is mainly achieved by enforce-
ment of a network of various transcription factors (TFs). TFs are multimers of poly-
peptide mediating different cellular responses through recognizing the specific 
cis-regulatory DNA sequences at the promoters of their targets genes (Franco- 
Zorrilla et al. 2014) and the rearrangement of the multimeric subunits leading to 
different functions through their differential expression patterns (Berk and Schmidt 
1990). The binding of TFs with cis-elements of stress-related genes results in either 
overexpression or suppression of these genes, which may improve the plant’s toler-
ance potential against different biotic stresses. Approximately 6% of the plant 
genome encodes for TFs, and among all, WRKY TFs are one of the largest families 
of transcriptional regulators in plants (Eulgem and Somssich 2007; Bakshi and 
Oelmüller 2014), involved in regulation of various physiological processes. WRKY 
TFs are emerging players in plant signaling, which regulate diverse cellular pro-
grams by relaying extracellular signals to intracellular responses and involved in 
multiple defense responses, development, metabolism, etc. The reprogramming of 
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WRKY network under biotic stress efficiently deteriorates the pathogens, and at the 
same time, it restricts defense responses, which can be detrimental for plant growth, 
development, and reproductive fitness. However, in the contemporary time of scien-
tific advancement, enormous role of WRKY TFs in abiotic stresses has also been 
revealed.

In the present chapter, we emphasize on WRKY TFs and their action on down-
stream regulation of different molecular switches under biotic stress. This will pro-
vide important insights in understanding of regulatory networks and its associated 
functions to develop strategies for crop improvement and value addition in plants, 
which could be useful to the humankind.

8.2  WRKY Domains and Classification

WRKY proteins constitute a novel family of plant-specific TFs and are character-
ized by the presence of WRKY domain which consists of ~60 amino acid residues 
at the N-terminus and a zinc-finger-like motif C-C-H-H/C at the C-terminus 
(Rushton et  al. 1996). The WRKY domains contain the conserved heptapeptide 
“WRKYGQK” also referred to as the “signature sequence” at the N-terminus of 
DNA-binding domain. WRKY proteins bind to W-box elements containing the con-
sensus motif TGACC/T, which occur either as single hexamers, TTGACC/T; as 
palindromic sequence, TGACC/T-A/GTCA; or as tandem repeats, TGACC/C- -
TGACC/T in the promoter of target genes (Eulgem et al. 1999; Yang et al. 1999). 
WRKY proteins have been categorized into three groups based on the number of 
WRKY domains and the type of their zinc-finger-like motif (Kumar et al. 2016).
Generally, group I member contains two WRKY domains both at N- and C-terminal 
and C2H2-type zinc-finger motif (C–X4–5–C–X22–23–H–X1–H), and group II has 
one WRKY domain with C2H2-type zinc-finger motif. Group II members have 
been further divided into subgroups a–e based upon additional amino acid motifs 
present outside the WRKY domain. Group III also has one WRKY domain but with 
C2HC-type zinc-finger motif (C–X7–C–X23–H–X–C) at C-terminal (Eulgem et al. 
2000). It has been reported for group I WRKY proteins from Arabidopsis thaliana, 
parsley (Petroselinum crispum), and sweet potato (Ipomoea batatas) that sequence- 
specific DNA binding occurs at the C-terminal of WRKY domain, but not the 
N-terminal domain (Ishiguro and Nakamura 1994; Agarwal et al. 2011) (Table 8.1).

The first WRKY TF has been identified as DNA-binding protein (SPF1) from 
Ipomoea batatas and shown to regulate gene expression in sucrose inducibility 
(Ishiguro and Nakamura 1994). WRKY proteins have been identified in a wide range 
of plants due to successive duplication events, resulting in large gene families includ-
ing up to 74 members in Arabidopsis (Ülker and Somssich 2004), >109  in rice 
(Shimono et  al. 2012), 197  in Glycine max (Schmutz et  al. 2010), 66  in papaya, 
104  in Populus, 68  in sorghum (Pandey and Somssich 2009), and 45  in barley 
(Mangelsen et al. 2008). WRKY TFs play a broad-spectrum regulatory role as a posi-
tive and negative regulator to control gene expression (Eulgem and Somssich 2007).
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8.3  Structure of DNA-Binding Domain of WRKY Proteins

The first structure of the C-terminal WRKY domains of AtWRKY1 and AtWRKY4 
protein of Arabidopsis thaliana revealed that the WRKY domain consists of a four- 
stranded antiparallel β-sheet and zinc-binding pocket formed by the coordination of 
zinc atom with the conserved two cysteine and histidine residues (Yamasaki et al. 
2005). The crystal structure of the C-terminal of WRKY domain of AtWRKY1 
consists of five β-strands, with DNA-binding residues located at β2 and β3 strands 
(Duan et al. 2007). The N-terminal region of the β-strand consisting of WRKY sig-
nature sequence partly protrudes from one surface of the protein, thereby enabling 
access to the major DNA groove, and binds to its cognate W-box. Recently, solution 
structure of WRKY domain with W-box-binding site has been determined, and it 
revealed that four-stranded β-sheet enters the major groove of the DNA in an atypi-
cal mode where the plane of the sheet is nearly perpendicular to the helical axis of 
DNA (Yamasaki et al. 2012). In the WRKYGQK signature sequence, the trypto-
phan residue forms the core of the structure, while all the other amino acids 
(RKYGQK) are directly involved in DNA binding. The glycine residue helps in 
bending of the strand and thus enables deep penetration into the DNA groove. 
Recognition of the W-box sequence occurs mainly through the hydrophobic interac-
tion with the methyl groups of thymine (T) bases of the DNA strand. Mutations in 
the residues involved either in DNA binding or in Zn binding significantly impaired 
the DNA-binding activity due to the disruption of the tertiary structure, which is 
important in DNA binding (Duan et al. 2007; Yamasaki et al. 2013).

8.4  Regulation of WRKY TFs

8.4.1  Autoregulation and Cross-Regulation

WRKY proteins are involved in diverse pathways and regulate the expression of 
downstream target genes either as a positive or negative regulator. The regulation of 
WRKY-dependent signaling pathways is very extensive and complex. In response 
to the internal or external stimuli, WRKY TFs trigger the expression of the target 
genes by binding to their W-box elements in the promoter regions. W-box elements 
are also present in the promoters of the majority of the WRKY genes, and this sug-
gests that they are regulated via specific feedback mechanisms (autoregulation by 
themselves or cross-regulation by other WRKY TFs) (Eulgem and Somssich 2007; 
Rushton et al. 2010). For example, chromatin immunoprecipitation (ChIP) analysis 
of PcWRKY1 of parsley (Petroselinum crispum) revealed that it binds not only to 
the W-box of its own promoter but also has affinity toward binding the promoters of 
PcWRKY3 and marker gene PcPR1 (Eulgem et  al. 1999; Turck et  al. 2004). 
Likewise, WRKY33 expression is activated by the MAPK3/6, and it autoregulates 
its expression via a positive feedback loop by binding to its own promoter (Mao 
et al. 2011). WRKY18, WRKY40, and WRKY60 act as a negative regulator of ABA 
signaling and could directly bind to the W-box in the promoter region of their 
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respective genes and thus repress the expression of all three WRKY genes (Chen 
et al. 2010; Yan et al. 2013). The above finding suggests the importance of autoregu-
lation and cross-regulation of WRKY TFs in maintaining the homeostasis of WRKY 
protein expression in the cell during abiotic and biotic stress conditions.

8.4.2  Regulation of WRKY TFs by MAP Kinases

Some WRKY TFs are also regulated via MAPK (mitogen-activated protein kinase) 
pathway (Adachi et al. 2015). WRKY TFs act downstream of various MAPKs to 
regulate defense-related plant genes (Phukan et al. 2016). The AtMPK3, AtMPK6, 
and AtMPK4 get activated during both biotic and abiotic stresses (Banerjee and 
Roychoudhury 2015). Group I WRKY TFs are the first protein, which gets phos-
phorylated by MAP kinases in response to PAMP-triggered MAPK signaling. Two 
WRKY proteins AtWRKY22 and AtWRKY29 act downstream of the bacterium 
flagellin receptor FLS2, are upregulated by a PAMP-induced MAPK cascade, and 
contain multiple W-boxes within their respective promoters. AtWRKY33, involved 
in the production of phytoalexin during pathogen attack, forms a complex with 
MPK4-MKS1 (MPK4 substrate) in the nucleus. Upon infection MPK, MKK (MAP 
kinase kinase), and MEKK (MAP kinase kinase kinase) are activated. The activated 
MPK4 phosphorylate MKS1, which lead to the dissociation of the MPK4-MKS1- 
WRKY33 complex, and AtWRKY33 was released. Then AtWRKY33 binds to the 
promoter of the target gene PAD3 (phytoalexin deficient 3) that is required for the 
synthesis of antimicrobial compound camalexin (Qiu et al. 2008). WRKY33 could 
be phosphorylated by two other MPKs, MPK3 and MPK6, which led to binding to 
its own and the PAD3 promoters in response to B. cinerea. Mao et al. (2011) had 
shown that in wrky33 mutant, camalexin production was abolished and mutation in 
the phosphorylation sites of WRKY33 also had the same effect. Taken together, 
these results suggested that AtWRKY33 works downstream of the MPK3/MPK6 
and phosphorylation of WRKY is important for the production of camalexin upon 
bacterial infection. In rice, OsWRKY33 is phosphorylated by BWMK1 (blast- and 
wounding-activated MAP kinase 1) and binds to the promoter of PR genes during 
salicylic acid-dependent defense responses (Koo et  al. 2009). OsWRKY53 sup-
presses herbivore-induced defense in rice by negative feedback modulation of 
MPK3/MPK6 activity (Hu et al. 2015). Therefore, phosphorylation and activation 
of WRKY proteins by MPKs is an important regulatory mechanism which increases 
the capacity of WRKYs to bind to the promoters of target gene which are involved 
in the plant defense responses.

8.4.3  Regulation of WRKY TFs via Histone Modification

A few WRKY TFs have been shown to be regulated by histone-modifying complex. 
AtWRKY70 gets activated by the Arabidopsis homolog of trithorax (ATX1) leading 
to nucleosomal histone H3K4 trimethylation which results in the activation of 
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SA-responsive gene PR1 and JA-responsive gene THI2.1 (THIONIN2.1). This find-
ing suggests that PR1 and THI2.1 genes are the downstream targets of WRKY70 
and regulated epigenetically (Alvarez-Venegas et al. 2007). In response to senes-
cence, H3K4 dimethylation and H3K4 trimethylation by histone methyltransferase 
occur at 5′ end and coding regions of AtWRKY53gene (Ay et al. 2009). Another 
example of histone modification has been shown in two type III WRKY TFS, 
AtWRKY38 and AtWRKY62. During bacterial infection, HDA19 (histone deacety-
lase 19) removes acetyl group from histone tails and represses transcription of 
AtWRKY38 and AtWRKY62 and thus negatively regulates basal defense (Kim et al. 
2008). Similarly, methylation at the promoter of AtWRKY40 inhibits expression of 
ABI5 and negatively regulates ABA signaling in seed germination and post- 
germination growth (Shang et al. 2010). Wang et al. (2012) showed that the protein 
encoded by chromatin remodeling linker histone H1gene (MaHIS1) and MaWRKY1 
could interact and regulate physiological processes like fruit ripening and stress 
responses in banana. MaHIS1 has also been shown to be induced by other factors 
like JA, ABA, and hydrogen peroxide and under cold stress.

8.4.4  Interaction of WRKY TFs with Other Factors

8.4.4.1  VQ Proteins
It has been reported in the literature that many interacting partners like coactivators 
regulate the expression of many WRKY TFs. One of the interacting partners is VQ 
protein, which is a group of cofactors containing a short conserved VQ-related 
motif (FxxxVQxLTG). The conserved valine and glutamine residues in the con-
served motif are important and required for the interaction with the C-terminal 
domain of WRKY TFs. In Arabidopsis and rice, 34 and 40 VQ members were iden-
tified, respectively, and shown to be involved in disease resistance and in the plant 
response to environmental stresses (Cheng et al. 2012; Kim et al. 2013). The first 
VQ proteins were identified as a MPK4 substrate (MKS) in Arabidopsis by using a 
yeast two-hybrid assay. The VQ protein MKS has been shown to form complex with 
AtWRKY25 and AtWRKY33, which are involved in the regulation of plant defense 
responses (Andreasson et  al. 2005). Binding of VQ proteins with WRKY TFs 
changes the binding affinity of the latter for the nucleotides flanking the conserved 
W-box. It has been shown that C-terminal domain of AtWRKY33 interacts with two 
VQ proteins, SIGMA FACTORBINDINGPROTEIN 1 (SIB1) and SIB2, to regulate 
plant defense response against necrotrophic pathogens Lai et  al. (2011). These 
results demonstrate that VQ proteins are crucial cofactors in regulating WRKY- 
mediated gene expression (Cheng et al. 2012; Chi et al. 2013).

8.4.4.2  Calmodulin (CaM) Proteins
CaM binds to the conserved Ca+2-dependent calmodulin-binding domain (CaBD) 
(DxxVxKFKxVISLLxxxR) present in WRKY group II members like AtWRKY7 
(Park et al. 2005). Increasing concentration of calcium triggers the interaction of 
CaM and WRKY members over WRKY-WRKY interaction (Chi et al. 2013).
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8.4.4.3  14-3-3 Proteins
14-3-3 proteins specifically bind to phosphoserine and phosphothreonine and regu-
late many processes like plant development, plant defense, and stress responses 
(Roberts 2003; Denison et al. 2011). They function as homo- or heterodimers and 
each dimer binds two substrates. In Arabidopsis, seven WRKY members including 
WRKY6, WRKY16, WRKY18, WRKY19, WRKY27, WRKY32, and WRKY40 
have been identified as putative interacting partners for 14-3-3 proteins by tandem 
affinity purification tag assay (Chang et al. 2009). 14-3-3 proteins interact and phos-
phorylate AtWRKY18 and AtWRKY40 to regulate ABA signaling (Shang et  al. 
2010; Shen et  al. 2003). These results suggest that 14-3-3 proteins might have 
potential roles in regulating biotic and abiotic stress responses via WRKY TFs 
(Chang et al. 2009; Rushton et al. 2010; Chi et al. 2013).

8.5  WRKY TFs in Defense Response

The plant innate immunity is mainly responsive to two interconnected pathways 
termed PTI or ETI (Jones and Dangl 2006). PTI is initiated by the recognition of 
molecular patterns of pathogens and activates MAP kinase cascade pathway and 
defense-related genes, while ETI is associated with plant disease resistance (R) pro-
teins that activate defense reactions upon specific recognition of pathogen effectors 
(Chisholm et al. 2006). PTI and ETI activate local as well as long-distance defense 
reactions like systemic acquired resistance (SAR) (Durrant and Dong 2004; Bostock 
2005).

8.5.1  Interaction of WRKY TFs with SA and JA Signaling Pathway

SA and JA are two important signaling molecules in defense response. JA-dependent 
plant defense pathways are activated by necrotrophic pathogens, whereas 
SA-dependent defenses are triggered by biotrophic pathogens. JA and SA signaling 
pathway act antagonistically in regulating defense response (Koornneef and Pieterse 
2008). During the past few years, much attention has been focused on TFs involved 
in the regulation of gene expression upon pathogen challenge. Expression profiling 
studies have revealed that a large set of the WRKY TF gene family members are 
responsive to pathogen challenge and regulate plant defense responses either as a 
positive or negative regulator (Eulgem and Somssich 2007). Expression of WRKY 
genes has been shown to get induced by pathogen infection and pathogen elicitors 
or by SA treatment in a number of plants (Agarwal et al. 2011). In Arabidopsis and 
rice, more than 75 and 109 WRKY genes have been reported (Shimono et al. 2012). 
Upon infection, pathogens induce SAR leading to accumulation of SA.  Many 
WRKYs are positively regulated by SA through the receptors NPR1 and its para-
logues NPR3 and NPR4 (Wang et al. 2006; Fu et al. 2012; Wu et al. 2012). A few 
WRKY genes including WRKY18, WRKY38, WRKY53, WRKY54, WRKY58, 
WRKY59, WRKY66, and WRKY70 bind to the W-box sequences in the promoter 
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region of NPR1 genes in Arabidopsis; this suggests that WRKY genes act upstream 
of NPR1 genes and involved in the positive regulation of WRKY TFs during 
pathogen- induced signaling (Wang et al. 2006; Ishihama and Yoshioka 2012). Many 
WRKY TFs are common component in the SA-/JA-mediated plant defense pathway 
(Koornneef and Pieterse 2008; Thaler et al. 2012). For example, WRKY70 works at 
a convergence point for maintaining balance between SA- and JA-mediated signal-
ing pathways as well as also plays a crucial role for R-gene-mediated resistance. 
Overexpression of AtWRKY70 induces the expression of SA-induced PR genes 
and acts as a positive transcriptional regulator of SA signaling while for JA-responsive 
pathways acts as a negative regulator. Overexpression of AtWRKY70 improved 
resistance to biotrophic pathogen Erysiphe cichoracearum and necrotrophic bacte-
ria Erwinia carotovora (Ecc) but reduced resistance to fungal necrotroph Alternaria 
brassicicola. Similar dual roles have also been observed for WRKY53. It positively 
regulates plant defense response during P. syringae infection, while its mutant dis-
played delayed symptom development toward Ralstonia solanacearum (Murray 
et al. 2007; Hu et al. 2008). Moreover, during P. syringae infection, WRKY11 and 
WRKY17 have shown to positively regulate the JA biosynthesis pathway genes, 
LOX2 and AOS, while negatively regulate the expression of WRKY70 (Li et  al. 
2004, 2006; Journot-Catalino et al. 2006). AtWRKY53 was reported to positively 
regulate the basal defense response during P. syringae infection while negatively 
regulate during JA and ethylene signaling pathway (Murray et al. 2007).

Three WRKY TFs of subgroup IIa, WRKY18, WRKY40, and WRKY60, function 
in a partly redundant way in regulating plant disease resistance. Xu et  al. (2006) 
showed that double mutants wrky18wrky40 and wrky18wrky60 and the triple 
mutant wrky18wrky40wrky60 were found to be more resistant to P. syringae infection 
but susceptible to B. cinerea. In other studies, Atwrky18/Atwrky40 double mutants 
showed resistance toward avirulent powdery mildew fungus Golovinomyces orontii, 
and complementation of WRKY40  in this mutant partially restored susceptibility 
(Pandey et al. 2010). The HvWRKY1 and HvWRKY2 homologs of AtWRKY18 and 
AtWRKY40 in barley act as a suppressor of PAMP-induced basal defense, leading to 
resistance against virulent pathogen B. graminis. During infection, fungal effector 
AVR10 is recognized by the resistance protein MLA (mildew resistance locus A) in 
the cytoplasm followed by interaction of HvWRKY 1 and 2 with activated MLA10 in 
the nucleus (Shen et al. 2007). In addition, AtWRKY33 is another example and was 
known to act as a positive regulator of resistance to the necrotrophic pathogens 
Botrytis cinerea and Alternaria brassicicola, while overexpression leads to suscepti-
bility to Pseudomonas syringae DC3000. However, loss of function mutant of 
AtWRKY33 showed increased resistance toward R. solanacearum (Zheng et al. 2006; 
Birkenbihl et al. 2012). Similarly, WRKY3 and WRKY4, which are structurally simi-
lar proteins, confer resistance to necrotrophic pathogens (Lai et al. 2008).

Few of the WRKY TF members act as negative regulator of defense signaling 
including AtWRKY7, AtWRKY38, AtWRKY62, and AtWRKY52. AtWRKY11, 
AtWRKY17, AtWRKY38, and AtWRKY62 negatively regulate basal defense 
response toward bacterial pathogen P. syringae. Interaction of AtWRKY38 and 
AtWRKY62 with HDA19, a positive regulator of plant basal disease resistance, 
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leads to inactivation of defense repressing WRKY38 and WRKY62 TFs (Journot- 
Catalino et al. 2006; Kim et al. 2008). Expression of AtWRKY62 is induced by SA 
and JA in a NPR1-dependent manner. Loss of function mutant of AtWRKY62 
resulted in enhanced expression of JA-response genes, while overexpression of 
AtWRKY62 inhibited JA-response gene expression (Mao et  al. 2007). In other 
study, overexpression of WRKY62 leads to elevated transcript levels of PR1 gene, 
whereas in Atwrky62 mutant, PR1 gene is downregulated (Kim et al. 2008). In addi-
tion, AtWRKY48 and AtWRKY8 also negatively regulate basal resistance to P. 
syringae (Xing et  al. 2008; Chen et  al. 2010). Additionally, WRKY8 was also 
involved in negative regulation of crucifer-infecting tobacco mosaic virus (TMV-cg) 
(Chen et al. 2013). AtWRKY48 mutants showed increased expression of PR1 genes 
found to be associated with reduced bacterial growth, whereas AtWRKY48 overex-
pressor lines showed the opposite phenotypes. AtWRKY58 acts downstream 
ofNPR1, negatively regulating SAR (Wang et al. 2006). Some WRKY proteins exist 
as chimeric proteins like AtWRKY52 which possesses TIR-NBS-LRR (Toll/inter-
leukin- 1 receptor-nucleotide-binding site-leucine-rich repeat) domain in combina-
tion with group III-type WRKY domain and mediates R-gene-based resistance 
toward bacterial wilt Ralstonia solanacearum. The physical interaction of 
AtWRKY52/RRS1 with its cognate bacterial effector PopP2 within the plant cell 
nucleus has been suggested to inactivate the WRKY domain of RRS1 to activate 
defense mechanisms by derepression (Deslandes et  al. 2003). AtWRKY16 and 
AtWRKY19 also contain NBS-LRR domain reported in Arabidopsis.

8.5.2  Overexpression/Downregulation of WRKY TFs for Biotic 
Stress Tolerance

Till date WRKY TFs have been reported from many plant species suggesting its 
importance in regulating plant defense response. Overexpression of many WRKY 
TFs from rice like OsWRKY13, OsWRKY31, OsWRKY45, OsWRKY53, and 
OsWRKY47 showed enhanced resistance to fungal pathogen Magnaporthe grisea, 
the causal agent of the devastating rice blast disease (Ryu et al. 2006; Wei et al. 
2013). In rice, OsWRKY13, an ortholog of AtWRKY70, is reported to have similar 
functions. Overexpression of OsWRKY13 activates the genes related to SA path-
ways but reduces the expression of genes in JA pathway (Qiu et  al. 2007). 
Overexpression of OsWRKY3 led to elevated expression of NPR1, PR1b, phenylala-
nine ammonia-lyase (ZB8), and peroxidase (POX22.3), suggesting that it works as 
a transcriptional regulator in SA- or JA-dependent defense signaling pathway (Liu 
et  al. 2005). Overexpressor transgenic lines of OsWRKY53 showed resistance 
against blast disease and induced the expression of PR proteins and peroxidase 
enzymes (Chujo et al. 2007). Overexpression of OsWRKY89 showed more tolerance 
to the rice blast fungus white-backed planthopper (Sogatella furcifera), a rice herbi-
vore (Wang et al. 2007). Lan et al. (2013) showed that overexpression of OsWRKY77 
in Arabidopsis led to enhanced resistance toward P. syringae suggesting its function 
as a positive regulator of plant defense. The OsWRKY45 showed improved 
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resistance to rice blast fungus and might work independent of NPR1-mediated SA 
signaling (Shimono et  al. 2007). In addition OsWRKY45 is found to negatively 
modulate the resistance of rice to the brown planthopper Nilaparvata lugens 
(Huangfu et al. 2016). Silencing of NaWRKY3 and NaWRKY6 in Nicotiana attenu-
ata made plants highly susceptible to lepidopteran herbivore (Skibbe et al. 2008). 
CaWRKY1 from pepper (Capsicum annuum) negatively regulates plant defense, as 
silencing of this gene led to decreased growth of Xanthomonas (Oh et al. 2008), 
whereas constitutive overexpression of CaWRKY40 resulted in enhanced resistance 
toward Ralstonia solanacearum (Dang et al. 2013). Shi et al. (2014) suggested that 
the overexpression of GhWRKY39 may positively regulate the plant response against 
bacterial R. solanacearum and bacterial pathogen R. solani. Transgenic tobacco 
plants overexpressing GhWRKY15 displayed more resistance toward viral and fun-
gal infections and showed induced expression of NPR1 gene (Yu et  al. 2012). 
GhWRKY25 overexpression resulted in enhanced sensitivity to the fungal pathogen 
Botrytis cinerea by reducing the expression of SA or ET signaling-related genes and 
inducing the expression of genes involved in the JA signaling pathway (Liu et al. 
2015). GhWRKY27a-overexpressing plants conferred reduced resistance to R. 
solani infection as demonstrated by severe disease symptoms in transgenic lines 
(Yan et al. 2015). Additionally, a number of WRKY TFs which are important play-
ers of plant immunity have been found in different plant species, for example, 
VvWRKY1 and VvWRKY2 from grapevine (Vitis vinifera), PtrWRKY89 from 
Populus trichocarpa, and MaWRKY1 and MaWRKY2 from Musa spp. (Marchive 
et al. 2013; Jiang et al. 2014; Shan et al. 2016).

8.6  Conclusion and Future Perspectives

In this chapter, we have focused on the most recent advances on WRKY TFs. Over 
the last two decades, significant progress has been made in order to understand the 
role of WRKY TFs. Current information suggests that the WRKY superfamily of 
TFs is composed of different types of proteins that have been implicated in plant 
developmental processes and pathogen-induced defense response. New finding 
illustrates that they participate in regulating a plethora of genes at various levels, by 
working as positive or negative regulator, by direct activation of downstream target 
genes, and by activating or repressing other TF genes. WRKY TFs are itself regu-
lated by a highly intricate mechanism in plants, and they are required to maintain 
normal cellular homeostasis under normal condition. One WRKY protein is found 
to regulate several plant processes at a time, and the mechanisms of regulation are 
not yet clear. Extensive study of these TF families is needed for better understand-
ing of the signaling pathways involved in WRKY-mediated regulation of defense 
and developmental processes. In the future it would be exciting to explore “how 
WRKY TF networks exert their functions on DNA/chromatin level” which will 
certainly allow us to open new vistas of diverse metabolic pathways, their cross- 
linking, and overall cellular physiology of plants under biotic stress conditions.
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Abstract
Plant pathogens trigger massive changes in plant gene expression in the host as a 
result of transcriptional reprogramming. This activates several defense-related 
pathways such as hormonal imbalances, signal transduction, induction of 
defense-related proteins, ROS generation, small RNA expression, etc.; small 
RNA regulates myriad biological processes in several eukaryotes constituting a 
vital group of gene expression regulators. Among all, plants utilize small non-
coding RNA machinery as a crucial means to respond and defend against patho-
gens by regulating immune-responsive genes. In turn, phytopathogens have 
evolved various effector molecules such as proteins and recently discovered 
sRNAs of fungal origin delivered into host cells to suppress plant immunity, to 
counter-defend the effect of host small RNA machinery. The significance of the 
small RNA-mediated plant defense response during plant-pathogen interaction 
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have been well-established. Here, we discuss findings on noncoding small RNAs 
(sRNAs) from plants and pathogens, which regulate host immunity and pathogen 
virulence.

Keywords
Small RNA · Plant immunity · Effector molecules · Phytopathogen · miRNAs

9.1  Introduction

Multicellular organisms (plants and animals) are evolved with various immune sys-
tems against invading pathogens (Ausubel 2005). PAMP-triggered immunity (PTI) 
is the first line of defense mediated by recognition of microbial- or pathogen- 
associated molecular patterns (MAMPs or PAMPs) via transmembrane pattern rec-
ognition receptors (PRRs). Effector-triggered susceptibility (ETS) is achieved by 
microbes which provide effector molecules into the host cells to successfully sup-
press PTI. Consecutively, several plant species have developed a category of immu-
nity activated by resistance (R) proteins that acts in response to pathogen effector 
proteins and attenuates PTI seizure. The disease resistance developed as a conse-
quence of hypersensitive response (HR) at the site of infection is a type of immunity 
called effector-triggered immunity (ETI). In this coevolutionary perspective, natural 
selection compels pathogens and plants to diversify their effector and resistance 
genes, respectively (Ronald and Beutler 2010). Recently, host-encoded small RNAs 
are shown to be involved in PTI and ETI (Jin 2008). These tiny regulatory small 
RNAs act by causing either transcriptional gene silencing (TGS) or posttranscrip-
tional gene silencing (PTGS) to a set of pathogen or host genes (Baulcombe 2004). 
The sRNA-based TGS is triggered by DNA methylation and histone modifications, 
while PTGS is mediated by sRNA involved in mRNA cleavage or translational 
repression (Schramke and Allshire 2004). MicroRNAs (miRNAs), natural antisense 
transcript-derived small interfering RNAs (nat-siRNAs), trans-acting small interfer-
ing RNAs (ta-siRNAs), heterochromatic small interfering RNAs (hc-siRNAs) or 
repeat-associated small interfering RNAs (ra-siRNAs), and long small interfering 
RNAs (lsiRNAs) (Vazquez et al. 2010) are the major classes of sRNA reported so 
far in eukaryotes. The current chapter focuses on the role of sRNAs during plant 
immunity upon exposure to various phytopathogens.

9.2  sRNA Biogenesis Pathway

sRNAs are 20–40 nucleotide long, noncoding RNAs existing in most of the eukary-
otic organisms and control expression of the genes either at transcription or posttran-
scription level. The biosynthetic mechanism of sRNA generation has been broadly 
investigated in the model plant Arabidopsis. Rising reports have recommended the 
significance of both forward and reverse genetics for outlining the cellular proteins 
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that are implicated in the biogenesis and function of small RNAs (miRNAs and siR-
NAs). The noncoding genomic regions generally harbor the plant miRNAs. This is 
contradictory to animal miRNAs, which are occasionally processed from introns of 
protein-coding genes (Baskerville and Bartel 2005). RNA polymerase II transcribes 
miRNA genes to generate imperfect fold-back structure called primary miRNA (pri-
miRNA). The pri-miRNA is processed into a stem-loop precursor miRNA (pre-
miRNA) and then diced as a duplex encompassing the mature miRNA and a 
passenger strand called miRNA.  DDL (DAWDLE) protein together with HYL1 
(HYPONASTIC LEAVES 1) and zinc finger protein SE (SERRATE) acts upon the 
pri-miRNA to form pre-miRNA. The DCL1/DCL4 protein further mediates the pro-
cessing of pre-miRNAs to form miRNA duplex (Fahlgren et  al. 2007). miRNA 
duplex is then 2′O methylated at 3′ end by HEN1 (HUA ENHANCER 1) and is 
exported to the cytoplasm by an exportin homolog, HST (HASTY) (Fig.  9.1). 
Processed mature miRNA strand is selectively integrated into AGO-containing RISC 
complex to cause either cleavage or translational repression of target mRNA 
(Brodersen et al. 2008).

The major information of the process of posttranscriptional gene silencing 
(PTGS) was furnished by Boulcombe and Hamilton who identified the degraded 
RNA products as small RNA species (siRNA) of ~25 nucleotides. siRNAs form and 
accumulate as double-stranded RNA molecules and were first detected in plants 
undergoing either co-suppression or virus-induced gene silencing and were also 
undetectable in control plants. In contrast to miRNAs, siRNAs are derived from 
perfectly paired double-stranded RNA (dsRNA) precursors. These dsRNA precur-
sors are produced either from antisense transcription or by the action of a cellular 
RNA-dependent RNA polymerase (RDR). Four different types of siRNAs have 
been reported in plants till now, viz., natural antisense transcript (NAT)-derived 
siRNAs (nat-siRNAs), heterochromatic siRNAs (hc-siRNAs) or repeat-associated 
siRNAs (ra-siRNAs), trans-acting siRNAs (ta-siRNAs), and long siRNAs 
(lsiRNAs).

9.3  Role of Noncoding sRNA in Bacterial, Viral, and Fungal 
Pathogenicity

Absence of DCL proteins makes bacterial sRNA different from other eukaryotic 
sRNAs. Bacterial sRNAs are heterogeneous in length, varying from 50 to 300 nucle-
otides, and regulate the stability and translation efficiency of target mRNAs through 
short and imperfect base pairing (10–25). Although in the recent past, several high- 
throughput RNA-seq studies have identified potential sRNAs in phytopathogenic 
bacteria such as Agrobacterium tumefaciens (Wilms et  al. 2012), Pst (Filiatrault 
et al. 2010), Xanthomonas campestris (Schmidtke et al. 2012), and Xanthomonas 
oryzae pv. oryzae (Liang et al. 2011), however their defined function in pathogen-
esis is still unclear. Recently, genome-wide transcriptome analysis identified sRNA 
in X. campestris pv. vesicatoria, as the causal agent of bacterial spot disease in 
tomato and pepper. Gene deletion analysis demonstrated that the noncoding sRNAs 
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sX12 and sX13 contribute to virulence (Schmidtke et  al. 2013). sX13 promotes 
synthesis of HrpX and regulates the expression of other proteins putatively involved 
in motility, signal transduction, posttranscriptional and transcriptional regulation, 
and virulence. Bacterial noncoding sRNAs operate with RNA-binding protein com-
plexes such as clustered regularly interspaced short palindromic repeats (CRISPR)-
CRISPR-associated (Cas) system, regulatory protein Hfq, and CsrA/RsmA 
RNA-binding protein (Wiedenheft et al. 2012; Karkute et al. 2017). CRISPR- Cas is 
an exclusive prokaryotic adaptive immune system, similar to eukaryotic RNAi 
defense (Horvath and Barrangou 2010). CRISPR-Cas system produces small 
crRNAs to identify target DNA/RNA by short base pairing in the presence of PAM 
sequence. Hfq is a RNA-binding protein that acts as a global posttranscriptional 
regulator by binding to bacterial sRNAs to inhibit translation or promote degrada-
tion of target mRNAs (Vogel and Luisi 2011). Hfq protein is reported in many 
bacteria such as Pectobacterium carotovorum, A. tumefaciens, P. syringae, Ralstonia 
solanacearum, and Xanthomonas spp. In A. tumefaciens, Hfq binds to sRNA 
AbcR1, which regulates expression of atu2422, an mRNA component of ABC 
transporter. The hfq mutant exhibits overproduction of several other ABC trans-
porter components and shows ectopic phenotypes of delayed growth, reduced 
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motility, altered cell morphology, and, most significantly, attenuated virulence 
(Wilms et al. 2012).

In addition, numerous reports have revealed that plant sRNAs are directly 
involved in bacterial disease responses. Among all, miRNAs were the first to be 
recognized to contribute in plant immunity during bacterial infections. Plants tested 
with pathogenic bacteria showed differential changes in miRNA accumulation 
(Jagadeeswaran et al. 2009). Virus-responsive sRNAs have also been investigated 
during several plant-virus interactions (Pumplin and Voinnet 2013). Nonetheless, in 
contradiction to bacterial infections, direct proof for the specific role of endogenous 
sRNAs in plant antiviral immunity has been incomplete due to interruption of the 
function and the biogenesis of plant sRNAs by viruses. Similar to a bacterial sup-
pressor that persuaded transcriptional subjugation of miR393, viral infections may 
also change miRNAs at the transcription level (Table  9.1) (Bazzini et  al. 2009). 
Additionally, other viral proteins may interrupt miRNA (miR156, miR167, miR171, 
and miR390) accumulation (Feng et al. 2012; Jay et al. 2011). Nevertheless, varia-
tions in accumulation of miRNA-derived tasiRNAs have also been linked with phe-
notypic variations during plant viral infections (Yifhar et al. 2012). Viral infections 
can alter hc-siRNAs production and modify the RNA-directed DNA methylation 
(RdDM) pathway which could reactivate transposons and transcription of silenced 
genes leading to negative plant defense responses (Dowen et al. 2012). In spite of 
the fact that viruses cause extensive effects on host sRNAs, some specific miRNA 
families seem to be directly implicated in antiviral immunity. Markedly, numerous 
host sRNAs are reported to be involved in regulation of host resistance genes.

Flagellin is perceived by Arabidopsis which limits Pseudomonas invasion, 
although detailed mechanism is unclear. Gene expression profiling of flg22-exposed 
Arabidopsis seedlings leads to build  up of three auxin receptors such as TIR1, 
AFB2, and AFB3, which are targets of miR393 (Navarro et al. 2006). This suggests 
that miR393 play a role in regulating defense responses during Pseudomonas inva-
sion. miR393a-overexpressing lines showed enhanced P. syringae pv. tomato (Pst) 
DC3000 resistance (Table  9.1) (Navarro et  al. 2006). During infiltration with 
Agrobacterium tumefaciens, increase of miR393 was also observed. Together, these 
results suggest that miR393a is clearly involved in ETI via auxin signaling. In addi-
tion to miR393, miR160 and miR167 were also induced upon nonpathogenic Pst 
DC3000 hrcC inoculation and flg22 treatment (Li et al. 2010). miR398 which tar-
gets a cytochrome c oxidase subunit V (COX5) and two superoxide dismutases 
(CSD1,CSD2) was shown to be reduced in the plants exposed to avirulent strains 
such as PstDC3000 avrRpm1 and PstDC3000 avrRpt2 (Jagadeeswaran et al. 2009). 
Expression of miR398 is downregulated in oxidative stress, promoting accumula-
tion of CSD1 and CSD2 (Sunkar et al. 2006). miR773 is also reported to be involved 
in PTI which targets the mRNA coding for DNA methyltransferase 2 (DMT2) (Li 
et al. 2010). During Agrobacterium infection, reduced tumor formation results from 
RNAi-mediated gene silencing of DMT2 and a different DNA methyltransferase 
(DMT1) (Crane and Gelvin 2007). In tomato and legumes, a group of miRNA fami-
lies have been reported to be directly involved in ETI by controlling many R genes 
of the NBS-LRR class (Zhai et al. 2011). In an attempt to discover other sRNAs 
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Table 9.1 Plant small RNAs involved in immunity

Small RNA Target(s) Host(s) Pathogen(s) Reference(s)
miR156 Ta3711, Ta7012, 

TaGAMYB1, and 
TaGAMYB2

Triticum 
aestivum

Fungus Xin et al. (2010)

miR158 PPR gene Brassica napus 
and B. rapa

Viruses and 
fungus

He et al. (2008)

miR159 MYB33, MYB65, 
and MYC101

Arabidopsis 
and T. aestivum

Bacteria 
and fungus

Zhang et al. 
(2011a) and Xin 
et al. (2010)

miR160 ARF10, ARF16, 
ARF17, ARF16, and 
a B3 DNA binding, 
Domain- 
containing protein

Arabidopsis, 
M. esculenta, 
and O. sativa

Bacteria 
and fungus

Li et al. (2010, 
2014) and 
Pinweha et al. 
(2015)

miR162 DCL1 Arabidopsis Viruses Azevedo et al. 
(2010)

miR164 NAC1 O. sativa and T. 
aestivum

Fungus Li et al. (2013) 
and Xin et al. 
(2010)

miR166 Ta3711, Ta7012 T. aestivum Fungus Xin et al. (2010)
miR167 ARF8, ARF6 Arabidopsis 

and T. aestivum
Bacteria 
and fungus

Fahlgren et al. 
(2007) and Gupta 
et al. (2012)

miR168 AGO1 Arabidopsis, N. 
benthamiana, 
and O. sativa

Bacteria 
and viruses

Varallyay et al. 
(2010) and Wu 
et al. (2015)

miR169 Nuclear transcription 
factor Y subunit A-3 
(putative)

O. sativa Fungus Li et al. (2013)

miR171 SCL T. aestivum Fungus Gupta et al. 
(2012)

miR172 MADS box (putative) O. sativa Fungus Li et al. (2013)
miR390 TAS3 Arabidopsis Bacteria Zhang et al. 

(2011a)
miR393 TIR1, AFB2, AFB3, 

AFB1
Arabidopsis 
and T. aestivum

Bacteria Navarro et al. 
(2006)

miR393b MEMB12 Arabidopsis 
and N. 
benthamiana

Bacteria Zhang et al. 
(2011b)

miR396a-5p GRF Solanaceae Fungus Chen et al. 
(2015)

miR398 CSD1, CSD2, COX5, 
SOD1, and SOD2

Arabidopsis, 
Hordeum 
vulgare, and O. 
sativa

Bacteria 
and fungus

Jagadeeswaran 
et al. (2009), Li 
et al. (2010, 
2014)

(continued)
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Table 9.1 (continued)

Small RNA Target(s) Host(s) Pathogen(s) Reference(s)
miR399 PHO2 Citrus, 

Solanum 
melongena

Bacteria 
and fungus

Yang et al. 
(2013)

miR403 AGO protein genes Glycine max Fungus Guo et al. (2011)
miR408 Copper protein Arabidopsis 

and T. aestivum
Bacteria 
and fungus

Zhang et al. 
(2011), Feng 
et al. 2012) and 
Gupta et al. 
(2012)

Plantacyanin
Laccase copper
Protein and copper
Ion-binding protein
Genes

miR444 MADS box T. aestivum Fungus Gupta et al. 
(2012)

miR472 CC-NBS-LRR Arabidopsis Bacteria Boccara et al. 
(2014)

miR482 NBS-LRR S. lycopersicum 
and Gossypium 
hirsutum

Viruses and 
fungus

Shivaprasad et al. 
(2012) and Zhu 
et al. (2013)

miR773 DMT2, MET2 Arabidopsis Bacteria Li et al. (2010)
miR825 Remorin, zinc finger, 

Homeobox family, 
Frataxin-related

Arabidopsis Bacteria Fahlgren et al. 
(2007)

miR827/ 
miR1138

eIF-4b T. aestivum Fungus Gupta et al. 
(2012)

miR1507 NBS-LRR M. truncatula – Zhai et al. (2011)
miR1510 AGO protein genes Glycine max Fungus Guo et al. (2011)
miR1535 AGO protein genes Glycine max Fungus Guo et al. (2011)
miR1885 TIR-NBS-LRR Brassica napus Virus Wroblewski et al. 

(2007)
miR2001/
miR2005/ 
miR2006/
miR2008/ 
miR2011/ 
miR2012

Unknown T. aestivum Fungus Xin et al. (2010)

miR2013 Receptor N N. tabacum and 
T. aestivum

Viruses Li et al. (2012)

miR2109 NBS-LRR Medicago Zhai et al. (2011)
miR2118 NBS-LRR Medicago, S. 

lycopersicum, 
G. hirsutum

Viruses Shivaprasad et al. 
(2012)

miR5300 Solyc05g008650, 
tm-2

S. lycopersicum Fungus Ouyang et al. 
(2014)

miR6019/
miR6020

TIR-NBS-LRR N. tabacum Viruses Li et al. (2012)

miR7695 OsNramp6 O. sativa Fungus Campo et al. 
(2013)

(continued)
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specifically induced in a pathogen response (P. syringae), Katiyar-Agarwal and co- 
workers (2007) identified a class of small RNAs (lsiRNAs). Of the six lsiRNAs 
identified, five were induced in response to Pst (avrRpt2) infection where 
AtlsiRNA-1 is the most functionally characterized lsiRNA.

In the recent past, more focus has been given to identify and characterize sRNAs 
in eukaryotic plant pathogens such as fungus involved in pathogenic development 
and virulence. An inclusive sRNA expression study in M. oryzae has identified two 
class of sRNAs linked with pathogenesis (Nunes et al. 2011). The sRNAs of one 
class were mapped to transfer RNA (tRNA) loci which are enriched in the appres-
soria region, while the other classes of sRNAs were mapped to several kinds of 
genomic. A second study reported that 24 nts is the primary size of sRNAs spotted 
from M. oryzae under physiological stress conditions and in planta during infection 
of rice (Raman et al. 2013). M. oryzae sRNAs regulate a subset of mRNAs post-
transcriptionally, including an effector gene, ACE1. A hybrid between a polyketide 
synthase and a nonribosomal peptide synthetase is encoded putatively by ACE1, 
which probably functions in secondary metabolite production, and it is tightly con-
trolled during the start of appressorial penetration (Fudal et  al. 2007). Similarly, 
sRNAs from the entomopathogenic fungus Metarhizium anisopliae (Zhou et  al. 
2012b) and the white mold fungus Sclerotinia sclerotiorum (Zhou et  al. 2012a) 

Table 9.1 (continued)

Small RNA Target(s) Host(s) Pathogen(s) Reference(s)
miR9863 Mla1 H.vulgare Fungus Liu et al. (2014)
nat- 
siRNAATGB2

PPRL Arabidopsis Bacteria Katiyar-Agarwal 
et al. (2006)

AtlsiRNA-1 AtRAP Arabidopsis Bacteria Katiyar-Agarwal 
et al. (2007)

Bc-siR3.1 PRXIIF Arabidopsis 
and S. 
lycopersicum

Fungus Weiberg et al. 
(2013)

Bc-siR3.2 MPK2 and MPK1 Arabidopsis 
and S. 
lycopersicum

Fungus Weiberg et al. 
(2013)

Bc-siR5 WAK Arabidopsis 
and S. 
lycopersicum

Fungus Weiberg et al. 
(2013)

TMV vsiRNA CPSF30, TRAPa Arabidopsis Viruses Qi et al. (2009)
Y-Sat siRNA CHLI N. tabacum Viruses Shimura et al. 

(2011) and Smith 
et al. (2011)

PC-sRNA8a/
PC-sRNA8b

HSP90 P. persica Viruses Navarro et al. 
(2012)

vd39/vd40 CalS11-like and 
CalS12-like

S. lycopersicum Viruses Adkar- 
Purushothama 
et al. (2015)

vdsiRNA SolWD40 S. lycopersicum Viruses Avina-Padilla 
et al. (2015)
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showed differential regulation during sclerotia conidiogenesis and assembly, respec-
tively. These results lend support to the belief that fungal endogenous sRNAs play a 
vital role in regulating virulence and developmental processes of fungal 
pathogens.

Additionally, plant miRNAs regulate phytohormones homeostasis by regulating 
the expression of their target transcripts (Sunkar and Zhu 2004). miR408 has been 
identified as negative controller of plantacyanins and laccase (Abdel-Ghany and 
Pilon 2008). Although the accurate function of plantacyanins in plants is unidenti-
fied, they have been, however, proposed to function in lignin formation, cell-to-cell 
signaling, and stress responses (Kim et al. 2003). Therefore, differential regulation of 
miR408 in susceptible and resistant wheat cultivars infected with Puccinia graminis 
f. sp. tritici pathotype 62G29-1 might lead to plantacyanin-mediated perturberance 
of lignin biosynthesis as a result of HR (Table 9.1) (Gupta et al. 2012). Similarly, 
miR2118 targets TIR-NBS-LRR in cotton infected with Verticillium dahliae (Yin 
et al. 2012), while pbe-SR23 and pbe-SR3 have been predicted to target TIR-LRR in 
Populus upon infection with Dothiorella gregaria (Chen et al. 2012). Very recently, 
Campo and co-workers (2013) have shown Osa-miR7695- mediated negative regula-
tion of natural resistance-associated macrophage protein 6 (OsNramp6) in disease 
resistance, while illustrating the presence of a novel regulatory network that inte-
grates miRNA function and mRNA processing in plant immunity. Overexpression of 
Osa-miR7695 in rice has resulted in resistance to blast fungus.

Yin and co-workers (2012) carried out studies on inclusive identification of miR-
NAs in two cotton cultivars, viz., Yi-11 (Gossypium hirsutum, Verticillium-sensitive 
cultivar) and Hai-7124 (Gossypium barbadense, Verticillium-tolerant cultivar), after 
infection with Verticillium fungus. Among identified miRNAs, three miRNAs, viz., 
Ptc-miR1444, Ptc-miR1448, and Ptc-miR482, target the cleavage of PPO gene (poly-
phenol oxidase) and disease resistance protein genes which regulate biotic and abiotic 
stress resistance in plants (Lu et al. 2008). Chen and co-workers (2012) suggested that 
there were as many as 74 conserved miRNA belonging to 37 miRNA families and 27 
novel miRNAs in Populus infected with D. gregaria. In contrast to the results obtained 
in galled loblolly pine stems infected with the fungus Cronartium where miR156 were 
significantly repressed (Lu et al. 2007), pbe-miR156aee was found to be induced upon 
infection with D. gregaria in Populus. The distinctive expression pattern of miRNAs 
in the same family can be linked to different function in different species under differ-
ent sets of pathogens. Consequently, to develop an improved understanding of the 
regulatory role of miRNAs on their target genes during pathogen stress, further exper-
imental confirmation of miRNAs is essential. Taking together the previous studies, all 
the fungi found responsive to miRNAs target several genes simultaneously, and each 
target gene is involved in controlling numerous physiological and biochemical pro-
cesses. Therefore, regulation and cross talk of gene expression during pathological 
development is an actively growing area to develop better understanding of disease 
pathogenesis. Nevertheless, taking into account the cases uncovered here of siRNAs 
related to plant immunity during bacterial and viral infections, together with the emer-
gent information generated around sRNAs, more siRNAs could also be involved in 
regulating viral and bacterial stress responses.
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9.4  Pathogen sRNAs Act as Effectors to Suppress Host 
Immunity

Pathogen effectors are molecules of pathogen origin, which are conveyed into host 
cells to overpower host immunity. Till now, almost all the studied effectors are pro-
tein in nature. Interestingly, a recent study in Botrytis cinerea (Bc) pathogen revealed 
that sRNA could also act as effector. This pathogen is a devastating pathogen having 
wide host range and can infect 200 or more different plant species. It was observed 
in Arabidopsis thaliana and tomato that during infection the Bc-sRNAs are deliv-
ered into host cells where they silence plant immunity genes. In both Arabidopsis 
and tomato hosts, more than 70 Bc-sRNAs have been identified to be probable 
effectors based on in planta expression and target gene predictions, for which three 
sRNA effectors have been demonstrated experimentally to silence host plant immu-
nity genes by overpowering host RNAi machinery. The successful infection of B. 
cinerea in host plants can be ensured by silencing of host immune genes (Weiberg 
et al. 2013). The Bc-sRNA effectors share similar features with host sRNAs and are 
favorably sorted into Arabidopsis AGO1 (AtAGO1) protein and thus exploit the 
host RNAi machinery by loading into host AGO1 to silence host immunity genes. 
In support of this, the Arabidopsis mutant ago1-27 was less susceptible to B. cine-
rea, because the Bc-sRNA effectors were no longer functional in guiding the host 
gene silencing without the suitable AGO protein (Weiberg et al. 2013). It was the 
first report of inhibition of host immunity where pathogenic sRNAs act as effectors. 
Further research will reveal whether this novel sRNA-based virulence pathway 
exists in other plant eukaryotic pathogens or not. Undeniably, an aggressive fungal 
pathogen, Verticillium dahliae, might have developed a comparable tactic of hijack-
ing the host plant RNAi machinery to repress host immunity. Similar to that observed 
during B. cinerea infection, the Arabidopsis ago1-27 mutant was more resistant 
against Verticillium spp., whereas several other Arabidopsis RNAi mutants exhib-
ited improved vulnerability (Ellendorff et al. 2009).

9.5  sRNA Biogenesis Proteins in Eukaryotic Plant 
Pathogens

The key components of the RNAi pathway are the proteins DCL, AGO, and RDR 
which are encoded by most of the eukaryotic pathogens. Several RNAi-dependent 
phenomena in N. crassa and other fungal species have been studied. Quelling, mei-
otic silencing of unpaired DNA (MSUD), the silencing of repeat-induced point 
(RIP) mutation, sex-induced silencing (SIS), DNA repair and homologous recombi-
nation, and DNA methylation are examples of RNAi-dependent phenomena. 
However, it is unclear whether RNAi pathway machinery are directly essential for 
pathogenicity in eukaryotic plant pathogens. The M. oryzae genome encodes three 
putative AGOs (MoAGO1–MoAGO3), two DCLs (MoDCL1 and MoDCL2), and 
three RDRs (MoRdRP1–MoRdRP3). MoDCL2 is required for transgene-induced 
gene silencing and sRNA-directed transposon silencing (Kadotani et  al. 2004). 
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Although there are no reports of any RNAi mutant strains, including Mordrp, 
Modcl1, Modcl2, and Modcl1dcl2, Modcl2 shows somewhat reduced growth—that 
illustrates obvious phenotypes associated with pathogenicity (Kadotani et al. 2004). 
In contrast, obvious defects in sporulation and growth have been observed in the 
zygomycete fruit rot pathogen Mucor circinelloides dcl2 and dcl1 mutants, respec-
tively (Nicolas et al. 2007). An ago1 mutant of M. circinelloides depicts defects in 
asexual spore production.

Very divergent RNAi pathways are active in fungus; for example, in plants and 
animals, the miRNA pathways are generally conserved but not in fungi. Instead, at 
least four different milRNA biogenesis pathways, including both DCL-dependent 
and DCL-independent pathways, are proposed in N. crassa, and miRNA-like RNAs 
(milRNA) have been identified in fungi (Zhou et al. 2012). It is imperative to deduce 
the existence of similar sRNA biogenesis pathways in oomycete and fungal patho-
gens. Moreover, DCLs appear to be functionally superfluous in sRNA processing in 
the majority of fungus (Weiberg et  al. 2013). The probable existence of varied 
sRNA biogenesis pathways in these organisms represents a challenge for research-
ers in the dissection of RNAi pathways and characterization of regulatory sRNAs in 
pathogenicity.

9.6  Conclusion and Future Perspectives

RNAi pathways and sRNAs play a vital role in regulating plant immunity. sRNAs 
from eukaryotic and bacterial pathogens are also significant regulators of pathoge-
nicity. Since the RNA molecules are known to act as effectors in suppressing host 
immunity, so it would not be surprising if in plants some of them also serve as 
PAMPs to trigger PTI. It would be fascinating to examine whether and how exten-
sive noncoding RNAs are in plant pathogens that can activate host innate immune 
responses or control pathogen virulence in plants. Several reports support the belief 
that sRNAs can translocate in between organisms, including between the pathogens 
and host cells, and can even stimulate cross-kingdom RNAi. Hence, this will con-
tinue to be a dynamic and pertinent research topic in near future.
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Abstract
Plants being sessile organisms encounter numerous attacks by pathogens and 
pests with different lifestyles and modes of attack. In response, plants undergo 
cellular reprogramming in order to perceive these attacks and activate specific 
defense pathways. Plants possess extensive regulatory mechanisms which come 
into play during defense responses so as to coordinate the perception and activa-
tion of pathways specific to the type of pathogen in question. Further, many 
small molecule hormones play pivotal role in defense pathways and cross com-
municate with each other, thereby helping plant to finely regulate its response. 
This suggests that plant defense is controlled by intricate transcriptional regula-
tory network, therefore urging the need to develop genome- and transcriptome- 
based strategies to unravel these mechanisms. Transcriptomics has fuelled a 
better understanding of many biological processes and can therefore be used for 
understanding the host-pathogen interactions as well. Transcriptome analysis 
can provide more comprehensive picture of the pathways that come into play in 
response to different pathogens and also decipher the cascade of transcriptional 
events involved. This may also help in identifying the regulatory nodes in the 
transcriptional networks and understanding the hierarchical relationship between 
them. These resources in turn will help in understanding of the complex architec-
ture of plant/host defense system which will have a long-term impact and value 
for crop improvement.
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10.1  Introduction

Plant-pathogen interactions are battles of attack and counterattack which are fought 
with highly sophisticated means for the survival of an individual. During this dis-
course plants respond by dynamic structural rearrangements within and around the 
attacked cells followed by reprogramming of cellular metabolism. In animals there 
are two forms of immune responses called as innate and adaptive immunity. Innate 
immunity forms a first line of defense against invading pathogens and is also a key 
element for the deployment of adaptive immunity. Plants lack adaptive immune 
system and depend entirely on innate immunity for defending themselves against 
pathogen attack.

Plants have developed a two-tier innate immune system to combat the invading 
pathogenic microbes. The first-tier immune system is designated as PTI (PAMP/
pattern-triggered immunity), which is activated upon perception of conserved 
molecular structures called microbe-/pathogen-associated molecular patterns 
(MAMPs/PAMPs) by plasma membrane-bound receptors known as plasma 
membrane- localized pattern recognition receptors (PRRs). For example, PRRs in 
Arabidopsis thaliana are AtFLS2 (FLAGELLIN SENSING 2) and AtEFR (EF-TU 
receptor) that recognize bacterial flagellin and elongation factor-Tu (EF-Tu), respec-
tively (Zipfel et  al. 2006). The pathogen/microbe in turn acquires a number of 
mechanisms imparting them virulence to suppress the host immune system by acti-
vating various effector proteins (Dou and Zhou 2012). To counter this acquired viru-
lence mechanism of pathogen/microbe, the plants have evolved the second tier of 
the innate immune system known as effector-triggered immunity (ETI). In this sys-
tem the host/plant recognizes – directly or indirectly – such effector proteins, result-
ing in initiation of effector-triggered immunity (ETI). During PTI and ETI, plants 
come up with an array of immune responses such as reactive oxygen species (ROS) 
generation, cellular Ca2+ release, MAP kinase (MAPK) activation, phytohormone 
production, and reprogramming of transcriptional mechanism, which collectively 
contribute to immunity. The signaling components are similar in both the immune 
systems, PTI and ETI, but with distinct activation dynamics and amplitudes (Tsuda 
and Katagiri 2010; Tsuda and Somssich 2015).

Earlier, knowledge about various cellular processes including pathogen stress 
was gained by working on individual genes in context of a particular process. But 
recent developments have shown that cellular processes are controlled by highly 
connected gene networks. Therefore, the function of an individual gene should be 
understood in the context of its complex interplay with other gene products (Dittrich 
et al. 2008). Also existence of cross talk between various processes and pathways 
has been revealed. For example, many biotic and abiotic stress pathways have been 
shown to have some overlap. Further, many development-related genes are shown 
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to play a role in other cellular processes like stress responses (Chung et al. 2008). 
Therefore, in order to gain a broader understanding of biological processes, we can-
not study genes in isolation but in the context of other genes. We have to move 
beyond the single gene approach and pave way to the study of genome or at least 
transcriptome of organisms as a whole. This will allow developing a wide picture of 
gene characteristics. Further, more needs to be achieved in less period of time. 
Food- and health-related problems are appealing the scientific community to do bet-
ter and come up with more comprehensive understanding of biology and provide 
solutions to the problems. Here genomics and transcriptomics come to our rescue as 
these have the potential to address many such problems.

In recent years transcriptomic studies have changed the whole scenario of our 
understanding of the molecular approaches/mechanisms of cells and tissues in health 
and diseases. This provides essential tools to fully understand the molecular basis of 
various agronomic traits and to manipulate them for human benefits (Harlizius et al. 
2004). The field of transcriptomics allows the simultaneous analysis of thousands of 
genes and their interactive networks to understand the architecture of genomes. 
Recent technological advances in the field of transcriptomics have seen a paradigm 
shift enabling the analysis of organisms in terms of genome organization, expression 
networks, and interaction (Hocquette 2005). This has led to and will further extend 
substantial and rapid advances in our understanding of the molecular basis of various 
processes including stresses (Mathers 2004). Such approaches may assist in illumi-
nating the mechanism as it enables the simultaneous discovery and study of many 
biological processes and genes involved in such processes. Another importance is 
that it helps to capture the structure-function relationships of genes. Also, the 
genomic, proteomic, and metabolomic studies in combination will provide the link 
between the relatively static genome and the highly dynamic physiological pro-
cesses. In this chapter we will focus on how transcriptomics leads to resource genera-
tion and subsequently development of understanding about how plants perceive and 
respond to pathogen stress. It will also throw light on how transcriptomic studies lead 
to unraveling the plant signaling and defense pathways.

10.2  Tools and Techniques Used in Transcriptomic Studies

There are various techniques used for the transcriptome-based studies, viz., real- 
time quantitative PCR (qPCR), northern blot, serial analysis of gene expression 
(SAGE), massively parallel signature sequencing (MPSS), microarrays, bead arrays, 
and RNA sequencing. The qPCR and northern blot techniques are generally best for 
analyzing relatively small number of transcripts in a large set of samples; however, 
the RNA sequencing and microarrays offer genome-wide surveys of the transcrip-
tome. The RNA sequencing technique generates expressed sequence tags (ESTs) 
from a given RNA sample without prior knowledge of the genes. In RNA sequenc-
ing, ESTs are created by sequencing the extreme ends of randomly isolated tran-
script cDNA, while as in Serial analysis of gene expression (SAGE) and Massive 
parallel signature sequencing (MPSS), 15-nucleotide tags and 17- to 20-nucleotide 
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tags are used, respectively. In case of microarrays and bead arrays, mRNAs of inter-
est are hybridized with a large number of probes spotted on a suitable substrate. 
These can be in the form of rectangular chips for microarrays or beads in fiber-optic 
bundles in the case of bead arrays (Schena et al. 1995; Kuhn et al. 2004). These 
strategies are complementary to each other.

The development of EST libraries associated with “differential gene expression” 
(DGE) technologies is increasing and provides an idea about many biological pro-
cesses (Marshall 2004). However, to generate ESTs related to a particular biological 
function like defense-related, development of suppression subtractive hybridization 
(SSH) technique (Diatchenko et al. 1996) might be helpful. In addition to these, 
there are various bioinformatics tools for in silico analysis of the transcriptomic 
database available to elucidate the identity and function of genes, promoter analysis 
of genes, interactome analysis to study the co-expressed networks of genes and 
transcription factors, etc. to analyze plant development as well as stress response.

10.3  Resource Generation

10.3.1  Gene Inventory and Function

Genome sequencing is a key step which may lead to our understanding of genetic 
organization and functions of genes. However, the genomes of most plants are quite 
large making genome sequencing very expensive. In contrast the sequencing of 
purified mRNA (mRNA-seq) can be used for the identification of genes and for 
providing information such as gene expression pattern and indications of epigenetic 
regulation. Thus mRNA-seq datasets can provide information about gene sequences 
and gene expression as well (Bancroft 2013). Transcriptome, as we define it, repre-
sents the complete set of RNAs encoded by a genome of a specific cell or an organ-
ism at a specific time or under specific conditions. Thus generation of sequence tags 
by transcriptomic techniques including next-generation sequencing (NGS) by 454 
and Illumina platforms can be used as an effective method of gene discovery. cDNA 
libraries constructed from various tissues and the sequencing followed by annota-
tion of the genes obtained thereof can lead to the discovery of genes associated with 
the specific tissues (Wellmer et al. 2006). Also construction of subtracted libraries 
from plants subjected to various stresses has led to the identification of many stress- 
related genes. Many studies have been reported where genes associated with per-
ception of pathogen signals and other signaling pathway components were identified 
using transcriptomic approach.

Over the last few years, the plant EST database generation is observing a surge 
at an exponential rate, and these EST databases have become a major source of plant 
sequence data. At present there are more than two million plant-derived ESTs from 
various species available at public databases. These data have provided a rich 
resource for gene discovery and annotation (Rudd 2003). Additional information 
can be obtained from these collections by comparing ESTs from multiple species 
(Fulton et  al. 2002; Vincentz et  al. 2004). A large number of databases from 
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different sources with different experimental conditions per dataset have been 
developed in the last couple of years (see Table 10.1).

Recently van Verk et al. (2011) developed gene co-expression networks by using 
publicly available Arabidopsis microarray datasets. They reported that many genes 
previously reported in literature to be relevant for stress responses fit current models 
of stress gene regulation. Despite this potential, the resources available for com-
parative EST analyses in plants remain limited and dispersed. Further studies on 
different plant-pathogen model systems based on bioinformatics approach to 
increase the resource database will benefit further characterization of the genes, 
regulatory factors, and signal transduction pathways involved in plant defense.

10.3.2  Generation of Functional Molecular Markers

The RNA-seq or transcriptome data has helped in the development of molecular 
markers from the transcribed regions of the genome. Among the important molecu-
lar markers that can be developed from transcriptome are single-nucleotide poly-
morphisms (SNPs) (Rafalski 2002) and simple sequence repeats (SSRs) also called 
as microsatellites (Varshney et al. 2005). Putative functions of molecular markers 
can be deduced using homology searches (BLASTX) with protein databases and are 
therefore known as “functional markers” (FMs) (Gupta and Rustgi 2004). FMs have 
some advantages over random markers (RMs) because FMs are completely linked 

Table 10.1 Major resources/database for plant EST data

Name of database/
organization URL References
NCBI dbEST http://www.ncbi.nlm.nih.gov/

dbEST/
Boguski et al. (1993)

NCBI UniGene http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=unigene

Pontius et al. (2003)

PlantGDB http://www.plantgdb.org Dong et al. (2004)
Sputnik http://sputnik.btk.f Rudd et al. (2003)
TIGR http://www.tigr.org/tdb/tgi/plant.

shtm
Ouyang and Buell (2004)

Genoplante http://genoplante-info.infobiogen.fr/ Samson et al. (2003)
Gene Expression 
Omnibus

http://www.ncbi.nlm.nih.gov/geo/ Edgar et al. (2002)

ArrayExpress http://www.ebi.ac.uk/microarray-as/
ae/

Brazma et al. (2003)

Genevestigator http://www.genevestigator.com/ Zimmermann et al. (2004) 
and Hruz et al. (2008)

The Botany Array 
Resource (BAR)

http://bbc.botany.utoronto.ca/ Toufighi et al. (2005)

ATTED-II http://atted.jp/ Obayashi et al. (2007)
AtGenExpress/PRIME http://prime.psc.riken.jp/ Akiyama et al. (2008)
PlantTFDB http://planttfdb.cbi.pku.edu.cn/ Jin et al. (2014)
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to the desired trait allele. Functional markers can be derived from the gene respon-
sible for the trait of interest and target the functional polymorphism in the gene, thus 
allowing selection in different genetic backgrounds. These markers will be helpful 
to identify loci controlling important traits like disease resistance and can be used 
for the development of improved or disease-resistant cultivars.

Simple sequence repeat (SSR) markers are widely used in plants and have vari-
ous uses including development of linkage map, quantitative trait loci (QTL) map-
ping, and marker-assisted selection. They are also used in evolutionary studies 
(Cavagnaro et  al. 2010; Zhu et  al. 2012). SSRs are tandem arrays of one to six 
nucleotides and occur in genomes of all prokaryotes and eukaryotes (Buschiazzo 
and Gemmell 2006; Kelkar et al. 2008). These tandem arrays have a high rate of 
mutation, and therefore, the number of repeat units varies, thereby resulting in 
highly polymorphic SSRs. Isolation of SSRs by traditional methods is a costly and 
labor-intensive process. With the development of NGS technologies using 454 or 
Illumina platforms, the sequencing of large portions of plant genomes can be done 
easily at low costs, thus allowing the rapid development of molecular markers, 
including microsatellites or SSRs (Ekblom and Galindo 2011). Recent studies have 
shown the efficient use of NGS technology for discovery of SSR loci in plants. 
Further, it has an advantage of developing SSR markers associated with functional 
genes and therefore represent specific phenotypes (Li et al. 2002).

SSRs are widely used in crop breeding programs, as large numbers of molecular 
markers linked to disease resistance traits are available in most crop species (Miah 
et al. 2013). For example, SSRs and SNPs also form an important class of functional 
molecular markers. NGS technology has potential to identify biologically signifi-
cant SNPs. These techniques identify SNPs from plant populations (different variet-
ies/genotypes) associated with a particular trait like disease resistance. Hence these 
can be used as toolbox aiding in selection and management of important traits like 
disease resistance in plant populations.

10.4  Unraveling the Defense Signaling Pathways Using 
Transcriptomics

The advent of whole transcriptome sequencing techniques presented a new dimen-
sion to biological studies and brought a paradigm shift from single gene analysis to 
whole transcriptome analysis across a wide spectrum of biological systems. Instead 
of focusing on single gene studies, transcriptomics allows understanding of whole 
transcriptome changes across a spectrum of biological conditions, resulting in a 
massive accumulation of gene database. Transcriptomics helps in gaining informa-
tion about the default and responsive expression states of the individual cells and 
tissues so as to understand how these states collectively form a functioning organ-
ism. Transcriptional profiling has become a component of a biologist’s toolbox 
(Brady et al. 2006). Plants establish multiple interactions with different microorgan-
isms in natural environments; therefore multi-species transcriptomics may lead to 
the discovery of key plant and microbial genes regulating these multi-species cross 
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talks. Such transcriptomic studies will be pivotal in plant defense signaling research 
in elucidating the key mechanisms by which plants respond to microbial infections 
and the counterresponse of microbes to plant defense signals. Defense responses are 
regulated by various signaling molecules including phytohormones [salicylic acid 
(SA), ethylene, jasmonic acid (JA)], nitric oxide (NO), reactive oxygen species 
(ROS), phytoalexins, etc. which vary as per the type of organism that interacts with 
the plant. The activation of a specific set of genes resulting in defense response is 
very much determined by the type of attacker encountered (De Vos et al. 2005; Mur 
et al. 2006; Ranjan et al. 2014). ROS and NO are important signaling molecules 
during the hypersensitive response (HR) and work together to bring about localized 
plant cell death as a defense response. SA has been observed to be involved in 
defense response against many plant pathogens including viruses, bacteria, biotro-
phic fungi, and phloem-feeding insects (De Vos et  al. 2005; Glazebrook 2005). 
Ethylene and JA signaling pathways work synergistically against insects, necrotro-
phic fungi, and bacteria as a defense response (Reymond et al. 2004; De Vos et al. 
2005; Bodenhausen and Reymond 2007; Ranjan et al. 2014). Reymond et al. (2004) 
estimated that 67–84% of Arabidopsis thaliana’s transcriptional responses to Pieris 
rapae were JA-mediated. Several of these genes code for proteins involved in anti- 
insect defenses. However, when Arabidopsis was given combined stress of drought 
and herbivory, the plant defense genes against biotrophic pathogens (e.g., PR2, 
PR5, RLP39, RLP41, WAK3) were downregulated (Olivas et al. 2016). This was in 
conformity with various reports that abiotic stresses have a negative impact on plant 
defense against pathogens (Suzuki et  al. 2014; Ramegowda and Senthil-Kumar 
2015). For plants exposed to combined stress imposed by B. cinerea and P. rapae, 
there was initial upregulation of ERF104 and BAP1 gene. ERF104 encodes a tran-
scription factor that is involved in ET-mediated responses through interaction with 
MPK6 (Bethke et al. 2009), and BAP1 encodes a negative regulator of plant defenses 
and is required for growth homeostasis under normal conditions (Yang et al. 2007). 
Several key regulatory proteins functioning as a molecular switch between SA and 
JA cross talk have been identified in Arabidopsis (Li et  al. 2004). Furthermore, 
PYL4 and PYL5 have been identified as components of the cross talk between the 
JA and ABA signaling pathways (Lackman et al. 2011). Thus in-depth understand-
ing of the type of response and the genes expressed has been achieved with the help 
of transcriptomic approaches. Various defense genes involved in different signaling 
pathways as elucidated by various transcriptomic-based studies are given in 
Table 10.2.

Further, transcriptomic studies have shown that plants have evolved a powerful 
regulatory mechanism by cross talk among hormonal signaling pathways and path-
ways involving metabolism, development, and reactive oxygen species synthesis, to 
effectively adapt to the complex stress situation (Narusaka et al. 2003; Brady et al. 
2006; van Verk et al. 2011; Schenk et al. 2012; Maleck et al. 2000). However, unrav-
eling the complexity of the mechanisms underlying these molecular cross talks and 
their role in the plant’s response to the hostile environment is a challenge in the field 
of molecular plant-microbe interactions, and transcriptomics hold an important 
portfolio in this aspect.
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10.5  Identification of Promoter Elements and Their Targets

Promoters are the regions on the DNA that regulate the gene expression at the tran-
scriptional level and identification of the promoter elements, and their targets are 
crucial for improving the understanding of gene regulation. Promoters of protein- 
encoding genes often contain a “core promoter,” which is a region located ∼40 bp 
upstream of the transcriptional initiation site and comprises the TATA box, which is 
the binding site for the transcription initiation factor TFIID TBP (TATA-box-binding 
protein) subunit (Molina and Grotewold 2005). Upstream of the core promoter lie 
the proximal and distal regions of the promoter containing different regulatory 
sequences such as enhancers, silencers, insulators, and cis-acting elements that act 
as binding sites for the basic transcriptional machinery involved in the initiation and 
regulation of transcription (Lee and Young 2000; Hernandez-Garcia and Finer 
2014). The modulation of gene expression during transcription by proximal pro-
moter elements is straightforward due to their close proximity to the core promoter. 
The distal promoter elements involve DNA folding mediated by conformational 
changes in the three-dimensional structure of DNA and chromatin (Hernandez- 
Garcia and Finer 2014). Numerous genes induced in response to pathogen attack 
have been identified, and their promoters have also been characterized. These pro-
moters contain specific cis-regulatory elements {W boxes, Box S (GCC-like ele-
ments), and D box} which are involved in inducing an anti-pathogen molecular 
cascade (Rushton et al. 2002). In recent times, many regulatory interactions between 
transcription factors (TFs) and the promoters of their target genes have been deter-
mined by various methods, for example, in vitro (by electrophoretic mobility shift 
assay and yeast one-hybrid) (Cai et  al. 2008) or in  vivo (by chromatin immune 
precipitation) (Aerts et al. 2008; Calo and Wysocka 2013). Recently two pathogen- 
responsive cis-elements, PRE2 and PRE4, were identified from the promoter region 
of OsWRKY13 in rice. The two cis-elements negatively regulate gene expression 
without pathogen challenge and positively regulate gene expression after pathogen- 
induced protein binding (Cai et al. 2008). However, it has been observed that a large 
number of genes in eukaryotes are not regulated by single promoters but multiple 
alternative promoters. For instance the MAP kinase gene OsBWMK1 and the 
LAGGING GROWTH DEVELOPMENT 1 (LGD1) genes in rice are differentially 

Table 10.2 Defense signaling genes involved in various signaling pathways

Signaling 
pathways Genes involved References
MAPK 
pathway

MAPKKK, MEKK1, MKK4/MKK5, 
MPK3/MPK6, WRKY22, WRKY29, etc.

Asai et al. (2002)

JA pathway MYC2, JAZ2, JAZ3, JMT, AOS, 
WRKY18/53, WRKY54/70, OPR3, etc.

McGrath et al. (2005) and Thines 
et al. (2007)

ET pathway ACS2, ACS4, ACS5, ACS6, ACO, ETR1, 
EIN2, EIN3, EOL1, ETO1, etc.

Chang (2003), Leon-Reyes et al. 
(2009), and An et al. (2010)

SA pathway EDS1, PADA, ICS1, PBS3, WRKY28, 
WRKY46, etc.

Broderson et al. (2006) and van 
Verk et al. (2011)
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expressed due to usage of alternative promoters (Koo et al. 2009; Thangasamy et al. 
2012). Synthetic promoters developed by combinatorial engineering of cis-elements 
of the native promoters have been pivotal in signaling and transcriptional activation. 
Synthetic promoters responsive to pathogen attack demonstrate that defense signal-
ing is largely conserved across species at the promoter level (Rushton et al. 2002). 
An extensive review on the importance of synthetic promoters reported in planta 
has been recently published by Dey et al. (2015). Similarly minimal promoters con-
taining pathogenesis-related elements (PR1), salicylic acid-responsive elements 
(SARE), jasmonic acid-responsive elements (JARE), and ethylene-responsive ele-
ments (ERE) involved in pathogen stress response were characterized using 
Agrobacterium-mediated transient expression assay (Hernandez-Garcia and Finer 
2014).

Defense response promoters have great biotechnological applications in devel-
oping transgenic crop plants which show disease resistance. Though constitutive 
promoters, like CaMV 35S promoter from the cauliflower mosaic virus (Odell et al. 
1985), have been commonly used in developing transgenic plants, they can have 
metabolic cost associated which may eventually impact the traits of interest like 
yield and biomass. The ideal pathogen-inducible promoters would be rapidly acti-
vated by a wide array of pathogens and deactivated under disease-free conditions. 
So far various pathogen-inducible promoters have been isolated from numerous 
pathogen-responsive genes in plants as given in Table 10.3.

A large database of plant promoters is available from different sources like 
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot 
et  al. 2002), PlantProm (http://mendel.cs.rhul.ac.uk/) (Shahmuradov et  al. 2003), 
PLACE (http://www.dna.affrc.go.jp/PLACE/) (Higo et al. 1998), PlantPAN (http://
PlantPAN. mbc. nctu.edu.tw.) (Chang et al. 2008), TRANSFAC (http://transfac.gbf-
braunschweig.de) (Wingender et  al. 1996), and Eukaryotic Promoter Database 
(EPD) (http://www.epd.isb-sib.ch) (Perier et al. 1998). However, there is a need to 

Table 10.3 Pathogen-inducible promoters isolated from plants

Promoters Plant species References
Defensin promoters All plants Kovalchuk et al. (2010)
CaMV 35S Cauliflower mosaic virus Odell et al. (1985)
OsPR10a Rice (Oryza sativa) Hwang et al. (2008)
Germin-like GER4 Barley (Hordeum vulgare L.) Himmelbach et al. (2010)
PPP1 Tobacco (Nicotiana tabacum) Peng et al. (2004)
hsr203J Tobacco (Nicotiana tabacum) Pontier et al. (1994)
str246C Tobacco (Nicotiana tabacum) Gough et al. (1995)
gst1 Potato (Solanum tuberosum) Martini et al. (1993)
sgd24 Tobacco (Nicotiana tabacum) Malnoy et al. (2003)
Ypr10 Malus domestica Pühringer et al. (2000)
VpSTS promoter Chinese wild (Vitis pseudoreticulata) Xu et al. (2010)
PR2 Parsley (Petroselinum crispum) van de Löcht et al. (1990)
PRE2 and PRE4 Rice (Oryza sativa) Cai et al. (2008)
EL117 Parsley (Petroselinum crispum) Kirsch et al. (2001)
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increase the current toolbox of promoters and cis-elements to gain an understanding 
of the gene regulation and action in basic and applied studies. Genome-wide tran-
scriptome analyses using high-throughput sequencing technologies will not only 
lead to better understanding of regulation of gene expression but also to the identi-
fication of novel promoters and cis-elements in plants.

10.6  Transcription Factors as Drivers of Transcriptional 
Regulatory Networks

Transcription factors (TFs) and transcriptional regulatory networks play key roles in 
both development and stress responses by acting as on/off switches for gene tran-
scription. Multiple signaling pathways regulate stress response, and there is signifi-
cant overlap between the gene expression patterns induced in response to different 
stresses (van Verk et al. 2011; Jin et al. 2015). TFs act as molecular switches in these 
multiple signaling pathways and by integrating and rewiring these pathways (Jin 
et al. 2015). There are almost 1500 genes encoding transcription factors (Czechowski 
et al. 2004) in Arabidopsis, and among these about 350 genes are involved in regula-
tion of these defense-signaling pathways as per the Arabidopsis transcriptional 
regulatory map (ATRM) (Jin et  al. 2015). The four prominent families of TFs 
involved in stress response are ethylene-responsive-element-binding factors (ERF), 
basic leucine zipper (bZIP) domain, WRKY proteins, and MYB proteins.

ERF proteins belong to subfamily of the APETALA2 (AP2)/ethylene- responsive- 
element-binding protein (EREBP). ERF proteins share a conserved 58–59-amino 
acid domain (the ERF domain) that binds to two similar cis-elements: the GCC box. 
This box is found in several PR (pathogenesis-related) gene promoters and confers 
ethylene responsiveness. The ERFs are also involved in dehydration and cold 
responsive gene expression moderated by the C-repeat (CRT)/dehydration- 
responsive element (DRE) motif. There are about 124 ERF proteins in Arabidopsis 
(Riechmann et al. 2000). It is reported that octadecanoid-responsive-Catharanthus- 
APETALA2-domain proteins (ORCAs) form a link between JA and the production 
of secondary metabolites for defense (van der Fits and Memelink 2000).

bZIPs form a large family of transcription factors in plants, and there are 75 
members in Arabidopsis (Jakoby et  al. 2002). TGA/octopine synthase (ocs)-
element- binding factor (OBF) proteins (a member of bZIP) bind to the activation 
sequence-1 (as-1)/ocs element and regulate the expression of some stress- responsive 
genes such as the PR-1 and GLUTATHIONE S-TRANSFERASE 6 (GST6) genes 
(Lebel et al. 1998; Chen and Singh 1999). Arabidopsis has seven members of the 
TGA/OBF family, which play roles in different stress responses.

WRKY proteins form a large family with 74 WRKY proteins identified in 
Arabidopsis and 109 in rice, 66 in papaya, 104 in poplar, 68 in sorghum, and 38 in 
the moss Physcomitrella patens (Eulgem et al. 2000; Robatzek and Somssich 2002; 
Qu and Zhu 2006; Pandey and Somssich 2009). WRKY proteins share a conserved 
60-amino acid domain (WRKY domains) containing the amino acid sequence 
WRKYGQK and a zinc fingerlike motif. WRKY family members show enhanced 
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expression in response to a range of pathogens, defense signals, and wounding 
(reviewed in Eulgem et al. 2000). WRKY transcription factors bind to W box [(T)
TGAC(C/T)] (Rushton et al. 1996) which forms a major class of cis-acting elements 
responsible for the pathogen inducibility of many plant genes (Rushton et al. 1996; 
Wang et  al. 1998). It was reported that the expression profiling of Arabidopsis 
WRKY genes revealed that majority of them were differentially regulated in 
response to SA treatment or infection by a bacterial pathogen (Dong et al. 2003). 
Recently co-expression analysis showed that the WRKY transcription factors 
involved in SA-mediated defense signaling and the co-expression network com-
prises W22/29, W11/25, W18/53, W30/33/40, W18/53, W48, W28/46, and W22, 
while in JA-mediated defense signaling, the co-expression network comprises 
W25/33, W54, W46, W11/48, W28, W18/40, and W53/70 (van Verk et al. 2011). 
The role of WRKY transcription factors in plant defense has been extensively 
reviewed by Pandey and Somssich (2009). Some WRKY genes involved in biotic 
stress responses in plants are given in Table 10.2.

MYB TF family is involved in regulating many processes like responses to biotic 
and abiotic stresses, development, differentiation, metabolism, defense, etc. MYB 
proteins have a highly conserved MYB DNA-binding domain at N-terminus and 
50–53-amino acid repeats encoding three a-helix structures (Lipsick 1996). 
However, C-terminus is the activation domain and varies significantly between 
MYB proteins. This variation results in a wide range of regulatory roles of MYB 
gene family (Jin and Martin 1999; Dubos et al. 2010; Muthamilarasan et al. 2014). 
Co-expression analysis of Arabidopsis transcription factors showed involvement of 
MYB15 and MYB32 in SA signaling pathway; MYB2, MYB29, and MYB15/95 in 
JA signaling pathway; and MYB36/38, MYB39/65, MYB43/55, and MYB61 in ET 
signaling pathway (van Verk et al. 2011). Some MYB genes involved in biotic stress 
responses in plants reported so far are given in Table 10.4.

10.7  Role of Small RNAs in Plant Immunity

Small RNAs are 20–40-nucleotide-long noncoding RNA molecules, generated by 
endoribonucleases DICER or DICER-like (DCL), and are present in most eukary-
otic organisms. They regulate gene expression at either transcriptional or posttran-
scriptional level (Katiyar-Agarwal and Jin 2010) in many biological processes 
including development, metabolism, and biotic and abiotic stress responses 
(Katiyar-Agarwal and Jin 2010; Westermann et al. 2016). Recently, mobile small 
RNAs (sRNAs) have been indicated to have a critical role in the regulation of trans-
portation of small regulatory molecules across the cellular boundaries, between the 
host and its interacting microbial partner in plant-microbe interactions (Westermann 
et al. 2016). Some of the sRNA and their targets reported so far, derived from the 
plant and microbial partner (pathogen) under different pathosystems, are given in 
Table 9.1 (Chap. 9).

Study of regulatory mechanisms involving small RNAs in plant defense is an 
emerging field, and with the advent of new technologies like high-throughput 
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Table 10.4 Some WRKY and MYB proteins and their plant defense response in plants

Name of the 
transcription factors Plant species Functions References
AtWRKY16 Arabidopsis 

thaliana
Increase the expression of PR 
genes

Chen and Chen 
(2002)

AtWRKY18 Arabidopsis 
thaliana

Increase the expression of PR 
genes

Robatzek and 
Somssich (2002)

AtWRKY70 Arabidopsis 
thaliana

SA- and JA-induced resistance 
pathways

Li et al. (2004)

AtWRKY38 and 
AtWRKY62

Arabidopsis 
thaliana

Contribute negatively to basal 
resistance toward this bacterial 
pathogen

Kim et al. (2008)

AtWRKY3 and 
AtWRKY4

Arabidopsis 
thaliana

Induce plant resistance toward 
necrotrophic pathogens

Lai et al. (2008)

OsWRKY31 Oryza sativa Enhanced resistance to fungal 
blast

Zhang et al. (2008)

OsWRKY13 Oryza sativa Activates SA-biosynthesis and 
SA-response genes while 
suppressing JA signaling

Qiu et al. (2008)

OsWRKY03 Oryza sativa Defense regulation Liu et al. (2005)
PcWRKY1 Petroselinum 

crispum
Induces the expression of PR10 
class gene, PcPR1-1, and 
represses PcWRKY3

Turck et al. (2004)

OsWRKY13 Oryza sativa Regulates rice resistance to 
bacterial blight and fungal blast

Wen et al. (2003)

MYB1 Nicotiana 
tabaccum

Plant defense response against 
TMV

Liu et al. (2004)

TiMYB2R-1 Thinopyrum 
intermedium

Plant defense response against 
Gaeumannomyces graminis

Liu et al. (2013)

AtMYB44 Arabidopsis 
thaliana

Plant defense response against 
aphid

Liu et al. (2010)

AtMYB060/and 
AtMYB094

Arabidopsis 
thaliana

Biotic stress response Cominelli et al. 
(2005)

MTF1 Arabidopsis 
thaliana

Regulates susceptibility against 
Agrobacterium

Sardesai et al. 
(2014)

AtMYB30, 
AtMYB44, 
AtMYB108/BOSI1

Arabidopsis 
thaliana

Plant defense response Buscaill and Rivas 
(2014)

Yellow seed1 (y1) Zea mays Plant defense response against 
Colletotrichum sublineolum

Ibraheem et al. 
(2015)

AtMYB108 Arabidopsis 
thaliana

Biotic stress response Mengiste et al. 
(2003)

TaPIMP1 Triticum 
aestivum

Plant defense response against 
Bipolaris sorokiniana

Zhang et al. (2012)

AtMYB15, 
AtMYB34, 
AtMYB51, and 
AtMYB75

Arabidopsis 
thaliana

Plant defense response against 
insect herbivore

Cheong et al. 
(2002) and Johnson 
and Dowd (2004)

(continued)
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next-generation sequencing, many more endogenous plant sRNA and pathogen- 
derived sRNAs will be identified in the future. Characterization of these small 
RNAs and their target genes will help in revealing new dimensions in plant defense 
signaling pathways and will ultimately lead to the development of effective tools for 
controlling diseases in plants.

10.8  Conclusion

Transcriptional reprogramming is important in the context of plant defense system, 
major challenge being to discriminate between gene expression associated with 
MTI and that orchestrated by effectors (Lewis et al. 2015). It is quite important to 
understand the responses of plant hosts to microbial infections so as to develop 
strategies for disease control. Since plant responses are complex, system-level tran-
scriptomic studies will help in understanding these responses (Van Verk et al. 2013; 
Jin et al. 2015; Lewis et al. 2015). This will lead to understanding of whole tran-
scriptome changes across a spectrum of biological conditions, resulting in develop-
ment of comprehensive gene database. The latest transcriptomic tools able to 
determine gene expression pattern would result in development of knowledge-base 
about the up- or downregulation of genes in response to various stresses (Brady 
et al. 2006). Co-expression gene networks and transcriptional regulatory networks 
could be built using bioinformatics approach, therefore adding to this knowledge- 
base (Van Verk et  al. 2011; Jin et  al. 2015). Fifty years ago no one could have 
guessed that we would have the tools to answer these questions. We need to follow 
global approach well suited for the analysis of plant-pathogen interactions, and in 
this context integration of genomics, proteomics, and metabolomics with statistics 
will refine our understanding of how the transcriptome gives rise to biological form 
and function.

Table 10.4 (continued)

Name of the 
transcription factors Plant species Functions References
AtMYB102 Arabidopsis 

thaliana
Plant defense response against 
insect herbivore Pieris rapae

De Vos et al. (2006)

OsJAMyb Oryza sativa Plant defense response against 
Magnaporthe oryza

Cao et al. (2015)

AtMYB96 Arabidopsis 
thaliana

Biotic stress response Seo and Park 
(2010)

AtMYB72 Arabidopsis 
thaliana

Induced systemic resistance 
mediated by beneficial fungi 
and bacteria

Segarra et al. 
(2009)
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Abstract
Pathogen attack is an intricate stimulus that induces stepwise defence response, 
namely, pathogen recognition, signal transduction and accomplishment of resis-
tance/defense. These steps employ an array of proteins, interacting among them-
selves to sense the pathogen and produce antimicrobials antagonistic to pathogen 
growth. In order to gain insights in molecular mechanism of plant–pathogen 
interaction at the biochemical and cellular level, deciphering the proteins that are 
involved in this cellular medley is a prerequisite. Proteomics, one of the impor-
tant subjects of “OMICS” generation, has played a principal role in the identifi-
cation of these proteins. Proteomics aims at identification and quantification of 
the proteins mediating a specific cellular process. While the current proteomic 
studies give valid information about these processes, they also emphasize upon 
the significance of post-translational modifications. The information on sequence 
and post-translational modifications of proteins is then used to further decipher 
the biological processes using bioinformatics, genomics, cell biology, biochem-
istry and other areas of life sciences. We present a brief overview of the pro-
teomic studies related to host–virus, host–bacteria and host–fungus interaction. 
We also provide the current stage of information on the techniques applied in 
proteomics and also the future challenges in this area of biological science.
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11.1  Introduction

All plant species, whether wild or cultivated, are persistently challenged by a variety 
of phytopathogens. Understanding the plant immune system has been a challenging 
task for plant biologists. Plants have multiple pathways that function in defence 
system against pathogens. The recognition of the pathogen and early signalling 
events are extremely rapid, consistent and specific. Subsequently, signalling cas-
cades comprising of a large number of proteins and signalling pathways are acti-
vated which lead to production of antimicrobial compounds (Lodha et al. 2013). 
Recent results reveal that cellular responses to pathogen attack are dependent on 
phytohormone signals that are highly regulated and complex. Both positive and 
negative crosstalk occurs among themselves, in order to regulate appropriate 
defence pathway. Plants deploy two modes of defence: constitutive and inducible. 
Inducible defence covers a wide range of molecules, including various chemicals 
like secondary metabolites, inhibitors of necessary cellular pathways and digestive 
enzyme inhibitors like protease inhibitors. Although the basic phases in plants dur-
ing pathogen attack remains to be the same, the response can alter greatly when host 
and pathogen combinations are different. The exact mechanism and strategies 
adopted by various plant species to ward off pathogens is not very well understood. 
However, the complicated mechanisms of plant–pathogen interactions and plant 
defence are being revealed anew due to considerable progress made in recent years 
on identifying differentially regulated genes and proteins in pathogen attack. 
Proteomic studies of plant–pathogen interaction to measure differential expression 
of proteins and their function in defence have opened up Pandora’s box of novel 
information for plant pathologists.

In the past two decades, proteomics has emerged as a powerful tool for investiga-
tion of biological systems. Descriptive proteomics aims at identification of proteins 
present in an organism under a given condition. Thus structural and functional 
changes in an organism under different sets of conditions could be explained in 
terms of differential abundance of proteins under those conditions. Proteomics also 
studies the post-translational modifications of proteins which fine-tune the func-
tions and structures of many proteins. With advancements in the techniques as well 
as expansion of our knowledge about protein functions and protein–protein interac-
tions, other subfields of proteomic such as interactomics and secretomics have 
emerged out to be very crucial and are providing interesting information regarding 
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protein structure and function (Gonzalez-Fernandez and Jorrin 2010). While inter-
actomics aims to determine protein–protein interactions, secretomics focuses upon 
only those proteins which are secreted from an organism. This chapter discusses the 
modern techniques of proteomics and its contributions unravelling the complex 
mechanism of different plant–pathogen interactions.

11.2  Tools of Proteomics

Proteins are structurally and functionally diverse biomolecules and are of immense 
importance in biocatalysis. The term proteomics in simplest terms is the study of the 
“proteome” (Wilkins et  al. 1996). The proteome is the total protein of a defined 
biological space at a given time under specific conditions. Thus, proteomic studies 
explain the quantity, time, location and purpose of the proteins that are synthesized 
in an organism. Proteomics is performed by separating the proteins present in a 
biological specimen on two-dimensional polyacrylamide gels and then identifica-
tion of differentially expressed spots using Sanger sequencing or mass spectrometry- 
based sequencing. In recent times it has also been possible to directly separate 
proteins on high-pressure liquid chromatography. Then protein identification and 
sequencing may be done by mass spectrometry (Fig. 11.1).

11.2.1  Two-Dimensional Polyacrylamide Gel Electrophoresis 
(2D-PAGE)

2D-PAGE is a high-impact and popular method for separation of individual protein 
from a complex mixture. It is based on the two independent properties of proteins, 
isoelectric point (pI) and molecular size. Initially, proteins are separated on gels on 
the basis of their isoelectric points. Thus the technique is called as isoelectric focus-
ing (IEF). All proteins have positively and negatively charged amino acids, and at 
one particular pH value, the net charge on the protein becomes zero. This is called 
isoelectric point of that protein. In isoelectric focussing, a pH gradient is made 
across the gel using electric current, and each protein comes to lie at a particular 
position in the gel where pH is equal to the isoelectric point at which the net charge 
on protein molecule is zero and it cannot move in the electric field.

The proteins are solubilized generally in highly concentrated urea solution, 
reducing agents and chaotrophs. Because of variable ion contents among different 
types of samples, the optimization of IEF buffer and the electrical profile is required 
for each type of sample. The pH gradient in gel is created using either carrier 
ampholytes, or alternatively immobilized pH gradient (IPG) gels can be used. Most 
modern researches use commercial IPGs for highly reproducible results. In the 
second dimension, protein molecules are separated on the basis of molecular 
weights (MW). This technique is called SDS-polyacrylamide gel electrophoresis 
(SDS- PAGE). In order to visualize the separated protein spots, the gel is stained 
with different stains viz. Coomassie Brilliant Blue (CBB), silver stain or SYPRO 
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stain (Duley and Grover 2001; Nat et  al. 2007). Although silver stain is highly 
sensitive and can detect proteins in the nanogram range, it has few drawbacks also. 
Silver staining is incompatible with the protein’s microchemical preparation and 
identification by mass spectrometric techniques, staining of proteins is nonstoi-
chiometric, and the assessment of silver staining is highly subjective. Another 
stain, SYPRO Ruby stain, which is ruthenium complex based is used for lumines-
cent detection of protein molecules. It is reproducible, linear and highly compati-
ble with the protein identification by mass spectrometry (White et al. 2004).

Experimental Design

Sample from Treated/Experimental plants

Protein Extraction

Total protein mixture

Sample preparation

Protein separation

Non-gel based Gel based
(SDS-PAGE, 2D-PAGE,DIGE)

iTRAQ ICAT MudPIT SILAC Excised Protein spots

Peptide Mixture
(After gel digestion)

MS or MS/MS

Bioinformatics Analysis

Protein Identification

Gene Knockdown
(Reverse genetics)

Identification of cDNA

Protein localisation Protein Tagging

Functional Investigation

Fig. 11.1 Schematic flow chart to show steps involved in proteomic studies of plant–phytopatho-
gen interaction
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Digital images obtained from 2D-PAGE could be analysed using softwares such 
as Melanie, PDQuest, Phoretix, Progenesis, Z3 or Z4000 (Righetti et al. 2004). The 
spots of interest are excised and digested with sequence-specific proteases before 
subjecting to identification by mass spectrometry (Zhu et al. 2003; Rose et al. 2004). 
Thus with the help of 2D-PAGE, proteins could be quantified, and their molecular 
weight, isoelectric focusing point and post-translational modifications (PTMs) 
could be characterized (Gorg et  al. 2004; Wittmann-Liebold et  al. 2006). The 
2D-PAGE holds the potential in thrust areas of research such as de novo sequencing 
and protein identification from unsequenced organisms, identification of modified 
proteins and protein isoforms (Rogowska-Wrzesinska et  al. 2013). 2D-PAGE is 
especially useful for studying protein modifications and to find prognostic or diag-
nostic biomarkers in various disease states. The protein modifications can be identi-
fied on 2D gels by looking for protein spots close to other protein spots with 
isoelectric point (pI) and molecular weight shift characteristic of a post-translational 
modification.

11.2.2  Fluorescent Two-Dimensional Difference Gel 
Electrophoresis (2D-DIGE)

2D DIGE is a versatile and advantageous technique of protein separation. It is an 
advanced form of 2D PAGE in which two or three protein samples can be compared 
simultaneously on the same gel. It can be used to study protein regulation between 
control and experimental samples. In this technique, the proteins in each sample are 
first covalently tagged using spectrally distinct, fluorescent cyanine dyes (e.g. Cy2, 
Cy3 and Cy5, etc.). These dyes are designed by matching charge and size to nullify 
its effect on the relative migration of proteins during electrophoresis. These dyes are 
pH and photostable and are highly sensitive for detection (Westermeier 2006). Each 
dye reacts with the N-terminal amino group present in proteins or with the amino 
group of lysine. After labelling with two different dyes, the two protein mixtures 
used for comparison are mixed together and run on a single two-dimensional (2D) 
gel. The dye-labelled samples are then analysed individually by gel scanning at dif-
ferent wavelengths. Thus every protein in one sample superimposes with its differ-
entially labelled but identical counterpart in other sample. Proteins that are common 
in both samples appear as “spots” with a fixed ratio of fluorescent signals, whereas 
proteins that differ between the samples differ in fluorescence intensity. Scanning of 
the gel at two different wavelengths indicates that whether any individual spot is 
associated with molecule of only one dye rather than two (Unlu et al. 1997). Then 
various softwares, specifically designed for 2D-DIGE analysis, are used to analyse 
the resulting images (Marouga et al. 2005). Using these image analysis programmes, 
volume ratios are generated for each spot. Volume ratios explain the intensity of a 
particular spot in each test sample, and thus changes in the protein abundance level 
can be identified and quantified.

The 2D-DIGE technique possesses all advantages of 2D and additionally elimi-
nates gel-to-gel variation, provides high resolution and is more sensitive and 
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reproducible (Gao 2014). Also the samples can be multiplexed on the same gel 
thereby reducing the number of gels required and limiting the experimental varia-
tions. The 2D-DIGE uses an internal standard; therefore, differences as low as 10% 
in protein expression can be quantified reliably (McGregor and Dunn 2006). The 
analysis of digital images of 2D-DIGE significantly improves the statistical assess-
ment of proteome variation.

11.2.3  ICAT (Isotope-Coded Affinity Tags)

Isotope-coded affinity tag (ICAT) is a gel-free technology used for quantitative pro-
teomics. In this technique the proteins present in samples are collected from two 
different experimental conditions (e.g. pathogen-challenged plant tissue extracts 
and control) and can be identified and quantified on the basis of chemical labelling 
agents (Gygi et al. 1999; Nat et al. 2007). The two different samples are first tagged 
with two different ICAT reagents. ICAT reagents consist of three functional ele-
ments: (i) a thiol-reactive group used for the selective labelling of reduced Cys resi-
dues, (ii) a biotin affinity tag that allows selective isolation of labelled peptides and 
(iii) a linker synthesized in either an isotopically normal (“light”) or “heavy” form 
(utilizing 2H or 13C). Linker incorporates the stable isotope tags. Under denaturing 
conditions, protein disulphide bridges are reduced, and the free sulphhydryl groups 
of the proteins from the samples are labelled/tagged, respectively, with the isotopi-
cally “light” or “heavy” forms of the reagent. The samples are then mixed and 
cleaved enzymatically to generate peptide fragments. Then isolation of tagged pep-
tides is done using avidin-affinity chromatography, and their analysis is carried out 
by microcapillary liquid chromatography-electrospray tandem mass spectrometry 
(Gygi et al. 1999; Nat et al. 2007). Peptides/proteins are identified using MS/MS 
analyses of all the individual fractions, and then observed MS/MS spectra are 
searched in protein sequence database. Thereafter the relative abundances of the 
peptide is obtained by observing the ratio between the signal intensities for the 
unfragmented isotopically “light” and “heavy” forms of the same peptide. Hence 
the protein can be identified from which it was derived, in the original samples. In 
this technique, relative quantities of the protein components present in mixtures can 
be determined in a single automated operation. This technique gives a measure of 
changes in protein levels induced by different stress conditions both quantitatively 
as well as qualitatively. ICAT is widely used to identify proteins associated with 
centrosomes that accumulate in abnormal ways in cancer cells and tumours, 
ICAT. This technique eliminates the need for 2-DE; however, major limitations of 
this technique are (i) selective detection of proteins which have relatively high cys-
teine content and (ii) difficulties in the detection of acidic proteins (Gygi et al. 2000; 
Zhou et al. 2002).
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11.2.4  ITRAQ (Isobaric Tagged for Relative and Absolute 
Quantitation)

ITRAQ technology is a variation of ICAT.  In ITRAQ proteins can be quantified 
from different sources in a single experiment (Ross et al. 2004; Agarwal et al. 2006; 
Zieske 2006; Lund et  al. 2007). In this technique, the proteins are differentially 
labelled with different isotope tags that can be up to four, at the peptide level so that 
every peptide generated from the digestion of a complex sample is labelled. This 
method is based on covalent labelling of N-terminus and side chain amine of pep-
tides from protein digestion with isotopic tag of varying mass. The labelled peptides 
are then separated by nanochromatography and analysed by tandem mass spectrom-
etry (MS/MS). The data obtained after fragmentation is used in database search to 
identify the labelled peptides and hence the corresponding proteins. The low molec-
ular mass reporter ions also generate from the fragmentations of attached tag. This 
data is used in quantification of peptides and the proteins from which they originate 
by using softwares such as i-tracker and jTraqX.

The iTRAQ technology is more advantageous as it includes the ability to multi-
plex several samples, quantification and simplified analysis with more analytical 
precision and accuracy (Agarwal et al. 2006; Lund et al. 2007; Zieske 2006). Two 
to four different samples can be used for comparisons in one MS-based experiment. 
The iTRAQ labelling strategy is not dependent on cysteine, so it eliminates the limi-
tation of ICAT technology. The iTRAQ potentially covers a large range of the pro-
teome by tagging tryptic peptides, and generally all of them possess primary amine 
groups (Agarwal et al. 2006; Ross et al. 2004; Zieske 2006).

11.2.5  MudPIT (Multidimensional Protein Identification 
Technology)

Another alternative to gel electrophoresis is MudPIT, an online 2D ion-exchange/
reversed-phase HPLC method. In this technology peptides are separated systemati-
cally, depending on charge present on the molecule in the first dimension and on 
hydrophobicity of the molecule in the second (Veenstra and Smith 2003). The pro-
tein samples are first subjected to digestion using sequence-specific enzymes such as 
trypsin and endoproteinase lysC. Secondly, the mixtures of peptides obtained are 
separated by two orthogonal separation systems – (i) strong cation exchange (SCX) 
and (ii) reversed-phase high-performance liquid chromatography (RP-HPLC) (Issaq 
et al. 2005; Washburn et al. 2001). Peptides from the RP column are then subjected 
to MS analysis and searched for similarities in the protein databases (Washburn et al. 
2001). Using this method, high-complex peptide mixtures can be analysed in a single 
experiment. Thus MudPIT technique provides a complete list of proteins present in 
a specific protein sample. It is fast, sensitive and highly reproducible. This method 
has added advantage of analysis of proteins of all functional and physical classes. 
Therefore, it is used for identification of protein complexes, cataloguing of proteins 
in cells and organisms at a large scale, profiling of proteins in membranes and 
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organelles, determination of post-translational modifications (PTMs), protein ubiq-
uitination in diverse plant species and quantitative analysis of protein expression 
(Yates et al. 2005, Cantin et al. 2006, Speers and Wu 2007; Maor et al. 2007). MudPIT 
can catalogue proteins in pathogens such as protozoa, bacteria and viruses if their 
sequences appear in the databases. Using the MudPIT approach, more than 2000 
proteins can be identified in any particular sample (Hernandez et al. 2012). Although 
MudPIT experiments have several advantages over gel-based methods, it is simulta-
neously a relatively lengthy process as the number of fractions produced take too 
much time to analyse by MS using the reverse-phase gradient (Anguraj-Vadivel 
2015).

11.2.6  Mass Spectrometry (MS)

MS is a well-accepted analytical tool used to distinguish molecules on the basis of 
their mass-to-charge ratios (m/z) and thus plays a central role in the field of pro-
teomics (Zhu et  al. 2009, 2010). Mass spectrometers consist of an ion source, a 
mass analyser and a detector. Ion source converts analyte molecules into gas-phase 
ions, and mass analyser separates ionized analytes on the basis of m/z ratio. Then 
the number of ions at each m/z value becomes recorded in the detector. In advanced 
MS analysis, two soft ionization methods, i.e. electrospray ionization (ESI) (Fenn 
et al. 1989) and matrix-assisted laser desorption/ionization (MALDI) (Karas and 
Hillenkamp 1988; Tanaka et al. 1988) are used. In both ESI and MALDI, ionization 
of large and nonvolatile analytes, such as proteins and peptides, is done with mini-
mal fragmentation. Thus, biomacromolecules may be analysed with high through-
put and much better sensitivity (Feng et al. 2015).

In protein samples, proteins or peptides are first fragmented using enzyme tryp-
sin, and then liquid chromatography is used for separation of fragments obtained. 
After separation, the samples undergo ionization by ESI or MALDI method on a 
high-resolution mass spectrometer where peptide masses can be measured to three 
or four decimal places (exact mass) with high degree of accuracy. Gaseous ions are 
separated using mass analyser, and mass peaks are registered by the detector. The 
pattern of mass peaks is then searched against the database using search algorithms 
to identify similar patterns already reported in other proteins, and depending on the 
degree of similarity of peptide mass peak pattern, protein sequence and function can 
be predicted. This technique is called “peptide mass fingerprinting”.

If required, the peptides can also be sequenced de novo, i.e. in any peptide, the 
sequence of amino acids can be determined without referring to any database. For 
this, first, a peptide having a specific mass is fragmented by using collision-induced 
dissociation, and then it is sent through another mass analyser which generates a set 
of fragment peaks. The amino acid sequences of the peptides are inferred using this 
exact mass of these peaks, using de novo sequence search algorithms or software. 
There are two categories of algorithms: database search algorithms and de novo 
search algorithms. The database algorithms include ProLUCID, SEQUEST, Mascot, 
PEAKS Protein ID, Phenyx OMSSA, MyriMatch, ByOnic, SIMS, MassWiz, etc. 
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(Lodha et al. 2013; Xu et al. 2015), while DeNoS, PEAKS, CycloBranch and Novor 
are de novo search programmes (Lodha et al. 2013; Ma 2015; Novak et al. 2015). 
Some other softwares used in protein identification are ESI prot 1.0, Medicwave 
Bioinformatics Suite, ProteoIQ, VIPER and Decon2LS, PatternLab for proteomics, 
MSight and Spectromania (Lodha et al. 2013).

Mass spectrometry has been much improved by the invention of the time-of- 
flight mass spectrometry (TOF-MS), which is most commonly used with MALDI 
and relatively non-destructive method for the conversion of proteins into volatile 
ions. MALDI is an ionization technique which is used for analyses of biomolecules 
and large organic molecules based on embedding samples in a matrix from which 
they are desorbed by laser light. Nowadays this technique has been an indispensable 
tool to analyse biological samples and has various applications in the field of bio-
analysis, diagnostics, drug discovery, environmental analysis etc. In proteomics, the 
main applications of MS are (i) identification of a protein from its peptide frag-
ments, (ii) determination of protein folding and interactions, (iii) cataloguing pro-
tein expression, (iv) identification of sites of protein modification, (v) detection of 
PTMs in complex biological proteins and (vi) quantification of a given sample pro-
tein (Han et al. 2008; Lodha et al. 2013).

11.2.7  Protein Microarray

Protein microarray, also known as a protein chip, is a powerful technology for the 
study of hundreds or thousands of proteins simultaneously as it possesses the poten-
tial for giving fundamental information on proteins, analytes, ligands, receptors, 
various interactions based on antibody affinity and partners involved in binding. 
Protein microarray thus permits high-throughput analysis (Romanov et al. 2014). In 
protein microarrays, antibodies or other affinity reagents, e.g. short peptides, poly-
saccharides, aptamers, allergens or synthetic small molecules, are first arrayed on a 
chip surface that may be of glass or plastic or silicon. Then the cell lysate is passed 
over this surface resulting in the binding of antigens to their cognate antibodies. The 
bound antigens are screened either using fluorescently tagged or radioactively 
labelled proteins. Secondary antibodies against each antigen of interest can also be 
used for screening. There are three types of protein microarrays, (i) analytical, (ii) 
functional and (iii) reverse-phase microarrays, which are used in biochemical activ-
ity studies of proteins. Analytical microarrays are used in protein profiling of a 
complex mixture. In analytical microarray, binding affinities, specificities and the 
expression levels of the various proteins present in the mixture can be measured. 
The most common analytical microarrays are antibody microarrays (Bertone and 
Snyder 2005).Various interactions such as interaction of protein molecules with 
protein or DNA or RNA or phospholipid or with some other small molecules can be 
studied using functional microarray analysis (Hall et  al. 2004; Zhu et  al. 2001). 
Reverse-phase protein microarray (RPA) is used to determine the presence of altered 
proteins that may occur in diseased tissue. RPAs can also be used, specifically, for 
characterization of post-translational modifications occurred in the tissues as a 
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result of disease (Speer et al. 2005). The major applications of microarrays are in 
protein–protein interaction analysis, host–microbe interaction analysis, biomarker 
identification, biochemical pathway mapping, detection of infectious diseases, drug 
screening, development of vaccines, enzyme–substrate profiling and immuno- 
profiling (Zhu et al. 2012; Romanov et al. 2014; Moore et al. 2016). Thus it has 
become the significant tool for both classical as well as functional proteome analy-
sis (Lodha et al. 2013).

11.2.8  Gel-Based Versus Non-gel-Based Proteomic Tools: 
Advantages and Limitations

Since two decades of the proteomics era, gel-based proteomics has gained immense 
importance for various studies pertaining to (i) the proteomic changes during plant 
growth and development and (ii) analysis of responses to various biotic and abiotic 
stimuli. The most widely used gel-based technique is 2D gel electrophoresis, in 
which ~2000 protein spots can be distinguished and processed before the identifica-
tion by mass spectrometry (Vadivel 2015). Using combination of narrow range pH 
gels, more than 5000 distinct protein spots can be resolved in 2-D gels (Hoving 
et al. 2000; Fey and Larsen 2001). These gels provide an exhaustive information 
about the protein sample analysed by providing quantitative maps of intact proteins. 
This technique can be used for visualization of small sized sample of proteins (even 
less than 0.1 ng of protein per spot) (Smith 2009), detection of differential protein 
expression between two or more biologically relevant conditions and separation of 
protein isoforms (Rogowska-Wrzesinska et  al. 2013). Although gel-based tech-
niques are widely used, still there are some limitations, e.g. insensitivity to low- 
abundant proteins, inability to characterize the entire proteome in one gel and poor 
reproducibility. Because any given proteome may be much complex and 2D PAGE 
techniques have separation limitations, only fraction of the proteome can be anal-
ysed (Zhu et al. 2003). Instead, 2D-PAGE provides a map of intact proteins, and 
changes in protein expression level, isoforms or post-translational modifications can 
be detected easily. Due to post-translational modifications, isoelectric point (e.g. in 
phosphorylations) or relative mass (e.g. glycosylation or truncation) may change, 
and thus mobility of protein molecules may vary on a 2DE gel. Therefore, different 
isoforms of the same protein may be visualized as different spots on the 2DE gel. 
Gel-based methods are time-consuming and expensive too. Most of these limita-
tions are addressed by gel-free proteomics techniques.

In proteomics, gel-free technology is more suitable for the analysis of proteins 
found in less abundance in complex samples. With liquid chromatography (LC) 
system, proteins and peptides can be separated in complex samples, very efficiently. 
Multidimensional chromatographic separation has further advantages in separation 
and identification of peptides. The advanced MS systems considerably improve the 
protein identification qualitatively as they are more sensitive and give more accurate 
protein quantitation results. However, gel-free MS-based proteomics requires con-
siderable investment in expensive MS instruments and associated infrastructure and 
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requires expert personnel to run the facility. Thus both gel and non-gel based of 
these approaches are of great importance, but no single approach can provide the 
whole information (qualitative as well as quantitative) of all protein components in 
any given complex mixture (Abdallah et al. 2012). So both approaches have their 
own advantages and disadvantages and are complementary to each other. They may 
be used in parallel so that one can get a more exhaustive information of protein 
expression and interactions in a specific physiological condition.

11.3  Understanding Plant–Pathogen Interaction in Light 
of Proteomics

In order to understand the disease resistance mechanism, the specific proteins 
expressed during plant–pathogen interaction must be identified. Use of tools of 
genomics, proteomics and high-throughput sensitive instruments has remarkably 
increased the knowledge of such interactions. Proteomics for studying plant–patho-
gen interactions started with the pioneering work of Ekramoddoullah and Hunt in 
1993. They studied protein profiles of two varieties of Pinus lambertiana (sugar- 
pine) (susceptible or resistant variety to pine blister rust fungus Cronartium ribic-
ola). Since then various plant–pathogen interactions have been studied using the 
proteomic tools. Here we summarize the important plant–virus, plant–bacteria and 
plant–fungus interaction studies carried out using proteomics.

In a successful plant defence response, plants induce different complex pathways 
against pathogen to inhibit the growth of pathogen. In general, two types of defence 
responses are triggered in plants during pathogenic attack, local and systemic 
(Lodha and Basak 2012; Hammond-Kosack and Jones 2000; Schenk et al. 2009). 
Local response recognizes the pathogens on the cell surface (Zipfel 2008; Hammond- 
Kosack and Jones 2000; Schenk et al. 2009; Mur et al. 2008). The second type of 
recognition pattern is a systematic or long-distance response. It induces defence 
signals that are not just located locally but spread to distant systemic tissues and is 
thus called as systemic acquired resistance (SAR). Activation of SAR takes place by 
salicylic acid (SA)-mediated pathway which subsequently elevates the level of other 
stress-responding molecules such as ethylene, jasmonic acid (JA), nitric oxide (NO) 
and pathogenesis-related (PR) proteins (Lodha et  al. 2013). The signalling path-
ways which are activated by different stress factors have been widely documented 
(Pieterse and Van-Loon 2004). Efforts are on to elucidate this complex defence 
system by comparative analysis of the proteins present in specific tissues, cells or 
cellular compartments during control conditions or under phytopathogenic stress.

11.3.1  Plant–Virus Interactions

Plant–virus interaction is one of the most studied biological relationships and is still 
an open area of research due to lacunae in our understanding of such interactions. 
Viruses are true parasites as they lack the cellular machinery necessary for 
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independent survival and replication outside a living cell. Proteomics has emerged 
as a promising tool to identify different class of proteins involved in plant–virus 
interactions. Cooper et al. (2003) and Brizard et al. (2006) isolated several virus–
host protein complexes using size exclusion chromatography from the rice yellow 
mottle virus (RYMV)-infected rice plants (Oryza sativa). Further identification of 
various types of proteins participating in metabolism functioning (e.g. glycolysis, 
malate and Krebs cycles), plant defence strategy (e.g. peroxidase, superoxide-dis-
mutase) and in protein synthesis (e.g. molecular chaperones, elongation factors) 
were studied with the help of mass spectrometry.

The plant–virus interactions start with transmission of the viruses into the plant 
cells through mechanical means which brings a healthy plant in close proximity to 
a diseased (infected) plant or transmission through an effective vector (highly 
mobile elements) playing a major role in virus infection, followed by replication. 
They subsequently travel through plasmodesmata to nearby cells by local move-
ment (cell to cell) and ultimately they circulate, systemically after reaching vascular 
tissues. This initiates circulation through vascular movement starting from phloem 
tissues to the sink tissues of the host leading viruses to establish systemic infection 
with the help of several cycles of replication. Viruses are dependent on plant pro-
teins to carry out mode of infection and also are influenced by the counteraction 
against the infection emerging from plant host proteins. By means of several tran-
scriptional tools, genes encoding these plant host proteins have been charted out 
from several plant–virus interactions (Table 11.1) and are extensively studied by 
researchers in this area. Diaz-Vivancos et al. (2006) reported about the variation in 
antioxidative system mapping levels of enzymatic activity and protein expression 
within leaf apoplast of Prunus persica cv. GS305 (peach) infected with on plum pox 
potyvirus (PPV). De-Blasio et al. (2015) studied interaction of host plant potato and 
its pathogen potato leafroll virus (PLRV) which produces a read-through protein 
(RTP). They carried out translational read-through of the amber stop codon to better 
understand the interaction via affinity purification along with quantitative MS (mass 
spectrometry) to form protein networks for a PLRV mutant (incapable of producing 
read-through domain (RTD)) in order to compare it with known wild-type PLRV 
protein interaction network.

As a result, PLRV–plant interactions were classified into four different catego-
ries: category I includes plant proteins along with nonstructural viral proteins inter-
acting with assembled coat proteins; category II elaborates about plant proteins in 
association with both RTD and coat protein; category III includes plant proteins in 
close association with RTD; and category IV explains those plant protein which 
show close affinity for virion but lacking RTD.

Several other studies were carried out on plant–virus interaction which demon-
strate that photosynthetic electron transport in photosystem II (PSII) was reduced 
which ultimately affects oxygen-evolving complex (Rahoutei et  al. 1999, 2000; 
Perez-Bueno et al. 2004). This reduction in level of functioning of oxygen-evolving 
complex leads to large multiplication and accumulation of virus in the plant host. 
Another proteomic study on interaction of rice yellow mottle virus with its natural 
host showed expression of proteins involved in maintaining oxidoreduction 
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environment; the generation and detoxification of reactive oxygen species were 
identified and were presumed to maintain an oxidoreduction environment which 
favours viral replication (Brizard et al. 2006). Several other categories of differen-
tially expressed proteins which are actively involved in translation, elongation fac-
tors, chaperones and chaperonins and proteins involved in proteomic turnover were 
reported in other plant–virus interaction study (Brizard et al. 2006). Proteomic anal-
ysis performed in order to identify proteins involved to study the interaction between 
Oryza sativa (rice) and rice yellow mottle sobemovirus (RYMV) (Delalande et al. 
2005) showed expression of a phenylalanine ammonia-lyase, chaperonin-60 (mito-
chondrial) along with aldolase C; however, their exact role and mechanism of these 
proteins in defense is still not clear. Recently a proteomic study has identified 
approximately 16 proteins from the interaction of host tomato fruits (Lycopersicon 
esculentum) with TMV. Most of the proteins involved in interaction were pathogen-
esis related (PR), and several others were antioxidative enzymes, and their expres-
sion probably helped in resistance of plant against viral infection (Casado-Vela 
et al. 2006).

Although proteomic approaches have identified several different categories of 
proteins, their probable role and mechanism in plant virus interaction is still 

Table 11.1 Proteomic studies on plant–virus interaction

Plant species Virus Proteomic approach References
Capsicum 
annuum

Tobacco mosaic 
virus

2D-PAGE, MALDI-TOF MS Lee et al. (2006)

N. tabacum Pepper mild 
mottle virus

2D-PAGE, N-terminal 
sequencing

Perez-Bueno et al. 
(2004)

Oryza sativa Rice yellow 
mottle virus 
(RYMV)

SDS-PAGE, Nano-LC-MS/MS, 
2D-PAGE, MALDI, LC-MS/MS

Ventelon-Debout 
et al. (2004)

Prunus persica, 
and P. serotina

Plum pox virus SDS-PAGE, IEF, MALDI-TOF Diaz et al. (2006)

Vigna mungo Mungbean 
yellow mosaic 
virus

MALDI-TOF TOF-MS Kundu et al. (2011)

Lycopersicon 
esculentum

Tomato yellow 
leaf curl virus

LC-MS/MS, 2D-PAGE, 
MALDI, LC-MS/MS

Pakkianathan and 
Murad (2014)

Beta vulgaris Beet necrotic 
yellow vein virus 
(BNYVV)

MS/MS spectra Kimberley et al. 
(2014)

Arabidopsis 
thaliana

Tobacco etch 
virus (TEV, 
genus Potyvirus)

Twin-strep-tag and identification 
by affinity purification followed 
by mass spectrometry analysis 
(AP-MS)

Martinez et al. 
(2016)

Lycopersicon 
esculentum

PMMoV-S 2D-PAGE, MALDI Casado-Vela et al. 
(2006)

Nicotiana 
benthamiana

PMMoV-S 2D-PAGE, MALDI Perez-Bueno et al. 
(2004)
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unachieved. Proteomic assay of various cell type involved in viral movement either 
it be leaf parenchyma or phloem tissue will only resolve this issue.

11.3.2  Plant–Bacterium Interactions

Plants are attacked by several groups of bacteria. Phylogenetic diversity of bacteria, 
on the basis of their interaction with plants, can be categorized into commensals 
(acquire nutrients in a manner the host remains unaffected), mutualists (helpful in 
plant growth) and pathogenic (acquire nutrients and plant health is negatively 
affected) (Newton et al. 2010). All three classes of bacteria have developed excep-
tionally modified physiology to interact with plants that reflects their requirement 
(Martin et al. 2003; Boller and Felix 2009). Environmental stresses result in changes 
in patterns of structural as well as transporter proteins, toxins and enzymes of bacte-
ria, thus enabling them to adapt to the changed environment (Boller and Felix 2009). 
The cell wall degradation in plants aggravates plant defense strategy as signals 
received through cell surface proteins, polysaccharides, lipopolysaccharides and 
degradative enzymes after infection (Newton et al. 2010). Proteins of plant- associated 
bacteria (PAB) are studied in plants, in the form of bacterial responses to active bio-
molecules or natural plant extracts, or secretome analysis in order to study the viru-
lence (vir) factor of the pathogenic bacteria (Guerreiro et  al. 1997; Corbett et  al. 
2005; Gourion et al. 2006; Chung et al. 2007). As per Mehta and Rosato (2001), 
differentially expressed proteins, including a sulphate-binding protein, were studied 
by NH2 terminal sequencing when Xanthomonas axonopodis pv. citri was cultivated 
in the host Citrus sinensis. Similar studies helped in identification of differentially 
expressed proteins, including a sulphate-binding protein, by NH2 terminal sequenc-
ing (Table 11.2). Jones et al. 2004, analysed the proteomic and transcriptomic pro-
files ofArabidopsis thaliana  during early response to Pseudomonas syringae pv. 
Tomato  strain DC3000. Their experiments suggested that bacterial challenge gener-
ally induce the enzymes peroxiredoxins (PrxA, B and IIE) and the antioxidants glu-
tathione S-transferases (GSTs F2, F6, F7 and F8) which potentially lead to specific 
post-translational modifications. They also concluded that individual members of 
these families may be specifically modified depending upon the degree of virulence 
of the DC3000 strain and outcome of the interaction. Similar studies were carried out 
in Medicago truncatula (model legume) in order to detect its response to pathogenic 
bacterium Pseudomonas aeruginosa. This proteomic analysis revealed significant 
changes in expression of 154 proteins, out of which 21 are related to defense and 
stress responses. Genome-based identification of types of proteins and effective tox-
ins which are directly related with plants are referred as effectors and are quite sig-
nificant to researchers in this area (Hogenhout et al. 2009).

In innate immune response, membrane proteins known as pattern recognition 
receptors (PRRs) are capable to identify pathogen-associated molecular patterns 
(PAMPs) of the invading pathogens (Gomez-Gomez and Boller 2000). As a result 
of PAMP recognition, there is activation of systemic acquired resistance (SAR), and 
this leads to production of resistance (R) proteins which results in effector-triggered 
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immunity (ETI) followed by hypersensitive response (HR) and leading to pro-
grammed cell death (Jones and Dangl 2006). Many reference data sets of proteomics 
have been established which identifies proteins for various PAB, via tools as two-
dimensional gel electrophoresis (2-DGE) or liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) techniques which identify proteins for various PAB 
(both pathogenic and mutualist) (Rosen et al. 2004; Chung et al. 2007; Anderson 
et al. 2006; Bosch et al. 2008). Basal defense system in the form of PAMPs and 
plant responses are induced, and such responses are in the form of flagellin protein, 
cold shock proteins and elongation factor (EFTu), chaperones and chaperonins 
(Newton et al. 2010; Rosen et al. 2004; Jacobs et al. 2012). A broad study of tran-
scriptomics elaborates about pathogenic bacteria involved in pathogenicity and 
hypersensitivity and shows different secretion systems for colonization leading to 

Table 11.2 Proteomic studies on plant–bacteria interaction

Plant species Bacterial pathogen Proteomic approach References
Arabidopsis 
thaliana

Pseudomonas syringae 2D-PAGE, MALDI-TOF 
MS/MS

Jones et al. 
(2004), (2006)

Oryza sativa Xanthomonas oryzae 
pv. Oryzae

2D-DIGE, MALDI-TOF 
MS

Mahmood et al. 
(2006) and Chen 
et al. (2007)

Oryzae sativa Xanthomonas oryzae 2D-PAGE/MudPIT and 
MALDI-TOF/MS or 
nESI-LC-MS/MS

Wang et al. (2013)

Lycopersicon 
hirsutum

Clavibacter 
michiganensis ssp. 
michiganensis

2D-PAGE, MALDI-TOF 
MS/MS

Coaker et al. 
(2004)

Medicago 
truncatula

Streptomyces meliloti 2D-PAGE, MALDI-TOF 
MS/MS

Mathesius et al. 
(2003)

Brassica oleracea Xanthomonas 
campestris pv. 
Campestris/parasite)

2D-PAGE, MALDI-TOF 
MS, MS/MS

Andrade et al. 
(2008)

Glycine max Bradyrhizobium 
japonicum/symbiont

2D-PAGE,LCMS/MS, 
LTQ-Orbitrap MS

Delmotte et al. 
(2010)

A. thaliana Methylobacterium 
extorquens/epiphyte

2D-PAGE, LC-MS/MS, 
MALDI-QqTOF MS/MS

Gourion et al. 
(2006)

Pisum sativum 
and Vicia cracca

Rhizobium 
leguminosarum Biovar 
viciae (symbiont)

2D-PAGE, microarray Karunakaran et al. 
(2009)

Chrysanthemum Erwinia chrysanthemi 
(soft rot)

2D-PAGE, MALDI- 
TOF- MS, LCQ ion trap 
MS

Kazemi-Pour 
et al. (2004)

Potato Pectobacterium 
atrosepticum

2D-PAGE, 
MALDI-TOF-MS

Mattinen et al. 
(2007)

Medicago 
truncatula

Streptomyces meliloti 
strain

LC-MS/MS Larrainzar et al. 
(2007)

Rice (var. Co43) P. fluorescens KH- 1 2-DE, MS, LC-MS/MS Kandasamy et al. 
(2009)
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host cell death (Buttner and Bonas 2010). Proteomics is important to understand the 
reaction mechanism behind pathogenesis as well as symbiosis (mutualism). This 
will further open up new areas of research in protein-based plant–microbe 
crosstalk.

11.3.3  Plant–Fungus Interactions

Proteomics has been extensively used to understand and characterize the key ele-
ments involved in plant–fungus interactions. In recent past, quite a few studies have 
been performed, which describe proteomic studies of fungi-infected plants. The 
main focus of such studies had been to analyse, identify and quantify the proteins 
present in the host plant during successful or unsuccessful resistance to fungal 
pathogen. In the recent years, a wide variety of fungal proteins involved in success-
ful pathogenesis have also been explored (Gonzalez-Fernandez and Jorrin-Novo 
2010, 2012).

The pathogenic fungal/host plant protein after separation in gels can be identified 
using bioinformatics tools. Since availability of high-quality genome data is limited 
to only those organisms which have been sequenced so far, the proteomic analysis 
and identification of proteins are also limited to these plants. A list of important 
plant–fungus studies using proteomics is enlisted in Table 11.3.

The pathogenic fungi adopt different strategies for infecting the host plant. The 
necrotrophic fungi kill the host tissue and thereafter obtain nutrients from necrotic 
host cells. The biotrophic fungi colonize the living host cells either intracellularly or 
intercellularly and obtain nutrients from living host tissues. Hemibiotrophic fungi 
exhibit both biotrophy and necrotrophy in a two-phasic manner (Lo Presti et  al. 
2015). Due to difference in mode of infection, different types of proteins are 
involved in different plant–fungus interactions. Therefore, it is imperative to study 
individual interactions separately. The host plant in response to the invading patho-
genic fungi elicits a host defense response. Both local as well as systemic immunity 
could be triggered by the host plant (Schwessinger and Ronald 2012). The plants 
show a two-tier innate immune response involving the localized plasma membrane 
proteins as well as the intracellular receptors (Lo Presti 2006; Dodds and Rathjen 
2010; Asai and Shirasu 2015). During pathogenesis, intracellular proteins and the 
secreted proteins of fungi are either upregulated or downregulated, thereby enabling 
the fungi for pathogenesis. Considering this, numerous proteomic efforts have been 
done to identify and characterize these proteins. Bohmer et al. (2007) carried out 
pioneering research to create a proteome map from mycelia of phytopathogenic 
fungus Ustilago maydis, during its morphological transition from bud stage to fila-
mentous stage. Greenville-Briggs et al. (2005) performed a parallel study of tran-
scriptome and proteome of Phytophthora infestans so as to identify proteins/genes 
upregulated during appressorium formation in the germinating cysts of the fungus. 
Five different protein-expressing genes were identified which are methionine syn-
thase (Pi-met1), a ketol-acid reductoisomerase (Pi-kari1), a tryptophan synthase 
(Pi-trp1), an acetolactate synthase (Pi-als1) and a threonine synthase (Pi-ts1). The 
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proteomes of both the pathogen and its host plant potato were evaluated during 
disease development.

Rampitsch et al. (2006) compared the proteome of a susceptible line of wheat 
which was infected with leaf rust to mock-inoculated wheat using 2DE followed by 
MS analysis. They observed 22 differently expressed proteins which included pro-
teins with known and hypothetical functions.

Another approach is the study of fungal proteins for the analysis of exoproteome, 
also called secretome. In this context, Phalip et  al. (2005) identified 84 fungal 
secreted proteins. They grew Fusarium graminearum, on hop (Humulus lupulus), 
and analysed the secretome using 2D-PAGE/MS.  Some of the fungal proteins 
involved in plant–pathogen interaction are methionine synthase and threonine syn-
thase (Phytophthora infestans/Solanum tuberosum); chitinase, serine proteinase, 
leucine aminopeptidase, lipase, pectate lyase, α-arabinofuranosidase, ceramidase, 

Table 11.3 Proteomic studies on plant–fungal pathogen interaction

Plant species Fungal pathogen Proteomic approach References
Zea mays F. verticillioides 2D-PAGE, MALDI-TOF- 

MS, LCQ ion trap MS
Campo et al. 
(2004)

O. sativa Rhizoctonia solani 2D-PAGE, ESI Q-TOF MS, 
MS/MS

Lee et al. (2006)

Triticum 
aestivum

Puccinia triticina 2D-PAGE, MALDI-QqTOF 
MS/MS

Rampitsch et al. 
(2006)

A. thaliana Plasmodiophora 
brassicae

2D-PAGE, MALDI-TOF-MS Devos et al. 
(2006)

A. thaliana Fusarium elicitor 2D-DIGE, MALDI-TOF MS Chivasa et al. 
2006

Triticum 
aestivum

Fusarium graminearum 2D-PAGE, LC-MS/MS Zhou et al. 
(2006)

Brassica napus Sclerotinia sclerotiorum 2D-PAGE, ESI-q-TOF MS/
MS

Liang et al. 
(2008)

Fagus sylvatica Phytophthora citricola SDS-PAGE, 2D-PAGE, ESI, 
LC-ESI

Valcu et al. 
(2009)

Arabidopsis 
thaliana

Alternaria brassicicola 2D-PAGE, LC-MS/MS Mukherjee et al. 
(2010)

Humulus 
lupulus

Verticillium albo-atrum 2D-PAGE, de novo 
sequencing

Mandelc et al. 
(2013)

Triticum 
aestivum

Septoria tritici HPLC, MS/MS Yang et al. 
(2013)

Triticum 
aestivum

Rhizoctonia solani Nano-LC-MS/HPLC Anderson et al. 
(2016)

Humulus 
lupulus

Verticillium nonalfalfae LC-MS/MS Flajsman et al. 
(2016)

Triticum 
aestivum

Puccinia striiformis f. 
sp. tritici

Nano-LC-ESI-MS/MS Demirci et al. 
(2016)

Solanum 
tuberosum

Phytophthora infestans LC-MS/MS Larsen et al. 
(2016)

A. thaliana PGPR Paenibacillus 
Polymyxa

2D-PAGE, LC-MS/MS Kwon et al. 
(2016)
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chitin deacetylase, β-glucosidase, polygalacturonidase, trypsin, aspartyl proteinase, 
xyloglucanase, carboxypeptidase and α-amylase (Fusarium graminearum/Humulus 
lupulus); and mucin, transglutaminase and glucanase (Phytophthora ramorum/Oak) 
(Grenville-Briggs et al. 2005; Phalip et al. 2005; Meijer et al. 2006). Yajima and 
Kav (2006) cultured Sclerotinia sclerotiorum and identified four different fungal 
proteins viz. exopolygalacturonase, cellobiohydrolase-1-catalytic domain, acid pro-
tease and aspartyl proteinase using proteomic tools. In these studies, various pro-
teins involved in defense, and stress responses, signal transduction, photosynthesis, 
electron transport and metabolism, have been identified.

Among the many proteins identified in plants during plant–fungus interactions 
are different classes of pathogenesis-related (PR) proteins such as chitinase, β-1,3 
glucanase, peroxidases and thaumatin-like protein (Oryza sativa, Triticum aestivum 
and Lycopersicon esculentum). The PR proteins β-1,3 glucanase and peroxidases 
have also been identified in Zea mays and Arabidopsis thaliana, respectively. 
Several other proteins reported from plants are glutathione S-transferase, glyceral-
dehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase, probenazole- 
induced protein, adenosine kinase, superoxide dismutase (SOD), glutamate 
dehydrogenase, thioredoxin, 20S proteasome β unit, chaperonin 60 β precursor, 
disease-resistance-response protein pi 49, receptor-like protein kinase, 14-3-3-like 
protein, etc. (Mehta et al. 2008).

Babich and Katam (2016) investigated molecular changes in the grape leaf dur-
ing the process of berry development and tolerance to anthracnose. Proteins 
extracted from leaf of different cultivars were separated using 2D-PAGE and char-
acterized using MS and later compared with Vitis database. They observed a total of 
56 differentially expressed proteins, which are known to be involved in the pro-
cesses of pathogen response, photosynthesis and metabolism. The tolerant grape 
cultivars showed more abundant proteins in comparison to susceptible cultivars.

Flajsman et al. (2016) did pioneering research using proteomic tools to identify 
proteins secreted in xylem sap following infection with Verticillium nonalfalfae 
spp. VnaPRX1.1277 of hop plants (Humulus lupulus). Three fungal proteins of V. 
nonalfalfae were found to be present in abundance, α-N-arabinofuranosidase 
(VnaAbf4.216), peroxidase (VnaPRX1.1277) and a hypothetical protein 
(VnaSSP4.2). These three proteins are the first ever secreted proteins which have 
been identified in xylem sap upon infection with Verticillium spp. They also reported 
that in planta expression of the two protein genes VnaPRX1.1277 and VnaSSP4.2 
increase with the progress in colonization, thereby establishing their significance in 
fungal virulence. Also the deletion mutants of V. nonalfalfae for these two genes 
showed compromised pathogenicity, and hence it is imperative to consider 
VnaPRX1.1277 and VnaSSP4.2 as virulence factors necessary for colonization of 
hop plants by V. nonalfalfae.

During the last 10  years, comparative molecular profiles of compatible and 
incompatible plant–pathogen interactions have been studied. Demirci et al. (2016) 
analysed proteome profiles of interacting wheat and Puccinia striiformis f. sp. tritici 
(Pst). Proteins were isolated from infected and control samples and separated using 
2D-LC system. The proteome of the two samples were compared. The differentially 
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expressed proteins were excised, eluted and identified with the help of nano-LC- 
ESI-MS/MS.  Out of the total differentially expressed proteins identified, 62% 
belonged to the wheat database and 38% were Pst proteins. The subcellular local-
ization and signal peptide motifs of these identified proteins were ascertained with 
the help of bioinformatics tools. All the identified wheat proteins were categorized 
in seven functional groups, viz. defense, stress responsive, gene expression, signal 
transduction, metabolism, electron transport and photosynthesis. Most of the identi-
fied proteins belonged to defense and stress-responsive groups. The defense group 
proteins included the antioxidant and detoxification proteins as dehydroascorbate 
reductase (DHAR), glutathione S-transferase (GST), superoxide dismutases 
(SODs), ascorbate peroxidase (APX), catalase (CAT), peroxidases (PX), peroxire-
doxins (PRX), etc. About 64 proteins were identified from the pathogen Puccinia 
striiformis f. sp. tritici. Out of these, 30 proteins were categorized in five different 
functional groups, namely, structure, attack, metabolism, gene expression and sig-
nal transduction. No function could be assigned to the remaining 34 proteins, and 
thus they were considered hypothetical.

Larsen et  al. (2016) established label-free proteomics to study the pathogenic 
interaction of P. infestans with three cultivars (Kuras, Bintje and Sarpo Mira) of 
potato plant. About 3248–3529 unique proteins were detected and identified from 
each cultivar of the potato plant. From the pathogen (P. infestans), nearly 758 pro-
teins were identified. The data set detailing the information about these proteins is 
available via ProteomeXchange, with the identifier PXD002767.

11.4  Apoplast Proteomics: An Emerging Field to Uncover 
Plant Pathogen Crosstalk

The extracellular matrix of the plant cell is called apoplast. The apoplastic fluid 
circulates in the intercellular spaces. The cell wall, the apoplast, the apoplastic fluid 
and the extracellular space outside the plasma membrane are the first compartmen-
tal venue in the plant body, which faces the pathogen challenge (Agrawal et  al. 
2010). It potentially perceives and transduces signals from the external environment 
to the symplast. The apoplastic space is the first physiological compartment for the 
interaction of plant and the pathogen, and the key processes that occur there deter-
mine whether a successful parasitism will be established or not (Doehlemann and 
Hemetsberger 2013). The apoplastic fluid constituents are nutrients, polysaccha-
rides, secondary metabolites and secreted proteins. It facilitates intercellular com-
munications and has significant role in regulation of growth, biotic and abiotic stress 
responses and cell wall maintenance (Ellis et  al. 2007; Tseng et  al. 2009). The 
mechanism of reactive oxygen species (ROS) accumulation and altered synthesis of 
extracellular protein takes place in apoplast as the first line of defense. A fine regula-
tion of expression of apoplastic proteins is necessary for pathogen perception and 
for maintaining integrity of cell wall (Pechanova et al. 2010).

In the recent few years, proteomic tools have been harnessed to study the apo-
plast during pathogenesis process. Yang et al. (2015) reported the results of a survey 
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of leaf apoplastic proteome in the resistant and susceptible varieties of wheat in 
response to the pathogen Zymoseptoria tritici. This pathogen inhibits the apoplast of 
the wheat plant and is responsible for causing Septoria tritici blotch (STB) on the 
foliage. They demonstrated that resistance of plants to Z. tritici has correlation with 
responses at proteome level.

They concluded that factors such as carbohydrate metabolism, reinforcement of 
cell wall, and synthesis of PR proteins in apoplast are linked with disease resistance. 
The pathogen has to overcome all these armours of host defense responses in order 
to achieve successful colonization.

Delaunois et  al. (2014) provided an insight to highlight the key molecules 
involved in plant–pathogen interaction using proteomic tools to study the apoplast. 
The apoplastic proteome under biotic stress still remains poorly characterized. Thus 
the future studies should aim at identification of apoplastic proteins during pathogen 
infection so that the mechanism of perception of pathogen stressors and regulation 
of stress could be understood.

Currently, apoplast proteomics is an emerging topic of research among scientists 
studying the complex phenomenon of plant–pathogen interaction. More light will 
be thrown upon this intricate relationship by studying the apoplast proteome in the 
coming years.

11.5  Conclusion

In recent years, the various gel- and non-gel-based protein separation methods cou-
pled with advanced spectrometry techniques have evolved as the prominent tools 
for protein identification and characterization.

As the proteomic tools have evolved and become more sensitive, the number of 
proteins that can be observed, identified and characterized has increased. The high- 
volume protein information, when synergized with high-throughput genomic infor-
mation, provides a window for protein complement to be characterized in silico. 
Thus the modern bioinformatics increase the efficacy of the proteomic studies 
immensely.

Numerous proteins have been identified so far both from host and the pathogen, 
and their specific roles are being explored. Since proteomics provides a rapid insight 
into the plant–pathogen intricacies, it is expected to be one of the imminent and 
integrative tools in biological research.
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12Role of Pathogenesis-Related (PR) 
Proteins in Plant Defense Mechanism
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Abstract
Plant growth and development is often challenged by several abiotic and biotic 
stresses, such as drought, cold, salinity, wounding, heavy metals, and pathogen 
attacks, respectively. A plant responds to these threats by activating a cascade of 
genes, encoding different effectors, receptors, and signaling and protective mol-
ecules. Among all, the induction and accumulation of pathogenesis-related (PR) 
proteins in plants in response to these adverse conditions is very important as PR 
proteins are an indispensible component of innate immune responses in plants 
under biotic or abiotic stress conditions. The PR proteins protect the plants from 
further infection by not only accumulating locally in the infected and surround-
ing tissues but also in remote uninfected tissues. Induction of PRs has been 
reported from many plant species belonging to different families suggesting a 
general role for these proteins in adaptation to biotic or abiotic stress conditions. 
PR proteins are also involved in hypersensitive response (HR) or systemic 
acquired resistance (SAR) against infection. Thus, PR proteins have been defined 
as “proteins encoded by the host plant but induced only in pathological or related 
situations,” the latter inferring situations of nonpathogenic origin. In this chapter, 
structure, biochemistry, source, regulation of gene expression, and role in defense 
mechanism of various pathogenesis-related proteins will be discussed.
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12.1  Introduction

Plants, as sessile organisms, are often encountered by various abiotic and biotic 
stresses affecting their growth and agricultural yield. Plant stress tolerance and sus-
ceptibility are governed by a complex exchange of signals and responses collec-
tively known by a general term, cellular stress response occurring under given 
environmental conditions in plants. So, the key difference between resistant and 
susceptible plants is the timely recognition of the invading pathogen or stress and 
the rapid and effective activation of host defense mechanisms.

Cellular stress response is a complex trait that happens due to the balanced coor-
dination of physiological and biochemical alterations at the cellular and molecular 
level. These alterations could be the physical strengthening of the cell wall or 
through accumulation of various osmolytes, late embryogenesis abundant (LEA) 
and PR proteins. Physical strengthening of cell wall is often through lignification, 
suberization, and callose deposition. Cellular alterations mostly coupled with an 
efficient antioxidant system and prevent pathogen invasion by producing phytoalex-
ins, phenolic compounds, and PR proteins. Various strategies acquired by plants 
during cellular stress responses serve the adaptive purpose of protecting a cell 
against unfavorable environmental conditions, both through short-term mechanisms 
that minimize acute damage to the overall cell’s integrity and through long-term 
mechanisms which provide the cell a measure of pliancy against similar adverse 
conditions. For any organism sustainability, the cellular machinery must be acti-
vated in response to the various stresses, to ensure that the resources are used when 
required. Accordingly, plant cells have evolved to perceive different signals from 
their surroundings, to integrate them, and to respond by modulating the appropriate 
gene expression that may involve protein phosphorylation, ion fluxes, reactive oxy-
gen species (ROS), and other singling events. A diverse array of plant protectants 
and defense genes get activated whose products include glutathione S-transferases 
(GST), peroxidases, proteinase inhibitors, cell wall proteins, hydrolytic enzymes 
(e.g., chitinases and β-1,3-glucanases), pathogenesis-related (PR) proteins, and 
phytoalexin biosynthetic enzymes, like phenylalanine ammonia lyase (PAL) and 
chalcone synthase (CHS) (Hammond-Kosack and Jones 1996). Among all, the syn-
thesis and activation of pathogenesis-related (PR) proteins is very critical in response 
to any stress situation and/or invading pathogen.

During incompatible host-pathogen interactions, the plant’s defensive responses 
restrict the damage caused by the pathogen. Subsequent infection by different types 
of pathogens is often limited by the defensive responses that is associated with a 
coordinated and integrated set of metabolic alterations. Further, various novel pro-
teins are synthesized and induced which are collectively known as “pathogenesis- 
related proteins” (PRs). Pathogen-related proteins (PRs) have been defined as 
“proteins encoded by the host plant but induced only in pathological or related situ-
ations,” the latter referring situations of nonpathogenic origin (Antoniw and Pierpoint 
1978). PRs have not been identified because of their anti-pathogenic action, but 
solely because of their easily identification in infected plants. A number of PRs have 
been reportedly induced in many plant species belonging to various families suggest-
ing a general protective role of PRs against biotic stress (Van Loon 1999). PRs not 
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only accumulate locally in the infected tissue but are also induced systemically. 
Thus, PRs are associated with the development of systemic acquired resistance 
(SAR) or hypersensitive response (HR) against further infection by pathogenic fungi, 
bacteria, and viruses. HR is characterized by necrotic lesions resulting from localized 
host cell death at the site of infection (Goodman and Novacky 1994). Moreover, 
plants respond to pathogen infection by activating defense responses in uninfected 
parts of the plant. As a result, the whole plant develops resistance to subsequent 
infections. This systemic acquired resistance (SAR) is a generally occurring phe-
nomenon and often confers broad-based resistance to a variety of different pathogens 
(Ryals et  al. 1996; Delaney 1997) instigating the defensive capacity of plants in 
response to necrotizing infections. Over the decades, a number of reports depicted 
the role of different classes of PR proteins during abiotic and biotic stresses and their 
defense responses in plants; however, the mechanism of action is sparsely described. 
In this chapter, we will be briefly discussing the biochemistry, source, regulation of 
gene expression, and mode of action of PR proteins in defense mechanisms.

12.2  PR Proteins: An Overview

PR proteins comprise a huge family of proteins ubiquitous in the plant kingdom. 
Plant PR proteins were first identified and reported in tobacco plants infected by 
tobacco mosaic virus (Van Loon and Van Kammen 1970). Later, these proteins were 
reported in many different plant species. Most plant PR proteins share the common 
biochemical properties of being acid soluble, low molecular weight, and protease 
resistance (Leubner-Metzger and Meins 1999; Neuhaus 1999). PR proteins have 
similar functions, but depending on their isoelectric points, they may be acidic or 
basic proteins. Most acidic PR proteins are secreted in the extracellular spaces, 
whereas basic PR proteins are predominantly found in the vacuole (Legrand et al. 
1987; Niki et al. 1998) through the signal peptide at C-terminus. However, such 
localization cannot be generalized for all PR proteins. Though PRs are most abun-
dant in the leaves, they are detected in almost all plant organs including leaves, 
stems, roots, and flowers. Usually, acidic PRs are upregulated by various signaling 
molecules like salicylic acid (Yalpani et al. 1991; Sinha et al. 2014) and reactive 
oxygen species (Chamnongpol et  al. 1998), while basic PRs are upregulated by 
gaseous phytohormone ethylene and methyl jasmonate (Xu et  al. 1994) during 
pathogen attack. Apart from various environmental factors, there are certain internal 
developmental factors too that trigger the synthesis of these PR proteins.

Based on molecular mass, isoelectric point, localization, and biological activity, 
the PR proteins have been categorized into 17 families (Table  12.1), including 
β-1,3-glucanases, chitinases, thaumatin-like proteins, peroxidases, ribosome- 
inactivating proteins, thionins, nonspecific lipid transfer proteins, oxalate oxidase, 
and oxalate-oxidase-like proteins (Van Loon and Van Strien 1999) and numbered in 
the order in which they were discovered. When dealing with a stress-related 
sequence possibly related with PRs, it is necessary to gather information at both the 
nucleic acid and the protein level as homologies at the cDNA, or genomic level may 
be encountered without information on the expression of the encoded protein. 
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Though such sequences belong to the PR-type families, they are to be named 
PR-like proteins (PRLs) and cannot be considered to correspond to pathogen- 
induced PRs (Van Loon et  al. 1994). Among these PRLs, chitinases and β-1,3- 
glucanases are two important hydrolytic enzymes that accumulate in many plant 
species after infection by different types of pathogens. These hydrolytic enzymes 
play the main role of defense reaction against fungal pathogen by degrading cell 
wall, because chitin and β-1,3-glucan are major structural components of the cell 
walls of many pathogenic fungi. Some of the tobacco PRs were characterized as 
chitinases and β-1,3-glucanases (Kauffmann et al. 1987) with potential antifungal 
activity suggested the group of PRs might be inhibiting pathogen growth and be 
responsible for the SAR. In spite of their common name, PR proteins show a great 
diversity in species specificity and in the mechanism of action and do not share any 
structural relationship among themselves.

PR proteins unveil diverse functions within the plant. Many PRs exhibit antifun-
gal activity (Caruso et al. 1996) though few of the PR proteins also show antibacte-
rial, insecticidal, nematicidal, and antiviral activity (Edreva 2005). PR proteins thus 
have a critical role in disease resistance, seed germination, and plant facilitation to 
adapt to the environmental stress.

12.2.1  Plant Chitinases

Chitinases (E.C. 3.2.1.14) are widely distributed across plant, animal, fungi, and 
bacteria kingdoms. These enzymes catalyze the cleavage of a bond between C1 and 
C4 of two consecutive N-acetyl-D-glucosamine monomers of chitin which is a 

Table 12.1 Classification of pathogenesis-related proteins

Families Properties Example
PR-1 Antifungal Tobacco PR-1a
PR-2 β-1,3-Glucanase Tobacco PR-2
PR-3 Chitinase type I, II, IV, V, VI, VII Tobacco P, Q
PR-4 Chitinase type I, II Tobacco “R”
PR-5 Thaumatin-like Tobacco S
PR-6 Proteinase inhibitor Tomato inhibitor I
PR-7 Endoproteinase Tomato P69
PR-8 Chitinase type III Cucumber chitinase
PR-9 Peroxidase Tobacco “lignin-forming peroxidase”
PR-10 Ribonuclease-like Parsley “PR1”
PR-11 Chitinase, type I Tobacco “class V” chitinase
PR-12 Defensin Radish Rs-AFP3
PR-13 Thionin Arabidopsis THI2.1
PR-14 Lipid transfer protein Barley LTP4
PR-15 Oxalate oxidase Barley OxOa (germin)
PR-16 Oxalate oxidase-like Barley OxOLP
PR-17 Unknown Tobacco PRp27
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common component of fungal cell walls and of the exoskeleton of arthropods 
(Bartnicki-Garcia 1968). Usually the plant chitinases are endo-chitinases capable of 
degrading chitin as well as inhibit fungal growth (Schlumbaum et al. 1986; Broekaert 
et al. 1988). Chitinases are either localized in the vacuole (Class I) or outside the 
cell (Class III) (Neuhaus et al. 1996). Many reports strongly indicated that chitin-
ases, together with β-1,3 glucanases, play critical role in the plant defense response 
against fungal pathogens (Abeles et al. 1971).

Plant chitinases have been classified into seven classes, class I through VII, based 
on their primary structures. Certain isoforms of chitinases are induced by particular 
elicitors, and only few isoforms have antifungal activities, while some isoforms 
have shown another role like antifreeze activity (Sela-Buurlage et  al. 1993; Yeh 
et  al. 2000). Class I chitinases have a cysteine-rich N-terminal chitin-binding 
domain (CBD) that is homologous to havein, a chitin-binding lectin from the rubber 
tree (Suarez et al. 2001). Class II chitinases are similar to class I but they lack the 
N-terminal CBD. Class III chitinases are unique in structure and belong to the PR-8 
family and family 18 of glycosyl-hydrolases. Class III chitinases are more closely 
related to the bacterial chitinases and generally have lysozyme activity. Class IV, V, 
VI, and VII chitinases belong to the PR-3 family of proteins (Meins et al. 1994).

Various biotic and abiotic factors have been known to induce chitinases in the 
plant. Various studies reported the inhibitory effect of plant chitinases on fungal 
growth by demonstrating on the growth of chitin-containing fungi (Mauch et  al. 
1988a, b). Various studies showed that chitinase expression is induced against phy-
topathogen systems, and resistant varieties have stronger upregulation than suscep-
tible varieties in the sugar beet (Nielsen et  al. 1992), wheat (Anguelova-Merhar 
et al. 2001), and tomato (Lawrence et al. 2000). Transformation of chitinase genes 
was performed in tobacco (Brogue et al. 1991), grapevine (Yamamoto et al. 2000), 
rice (Datta et al. 2001), and peanut (Rohini and Rao 2001), and enhanced disease 
resistance has been achieved. Overexpression studies have been made with chitin-
ase genes, alone or together with β-1,3-glucanase genes in a number of plant spe-
cies, and in most cases, the resulting transgenic plants exhibited enhanced levels of 
fungal disease resistance or delayed symptom development as compared to the con-
trol plants (Zhu et al. 1994; Jach et al. 1995; Jongedijk et al. 1995). However, sev-
eral studies showed that plants transformed with either chitinase or β-1,3-glucanase 
gene alone did not exhibit resistance to certain pathogens or showed less resistance. 
Plant chitinases alone are unable to effectively degrade harder chitin structures of 
fungi as they usually affect only the hyphal tip, but when coexpressed with β-1,3- 
glucanase, these two enzymes act synergistically against fungal pathogen.

12.2.2  Plant β-1,3-Glucanases

Plant β-1,3-glucanases belong to the PR-2 family of pathogenesis-related proteins and 
reportedly play an important role in plant defense responses to pathogen infection. 
These enzymes have been identified across plants, yeasts, actinomycetes, bacteria, 
fungi, insects, and fish (Pan et al. 1989). These enzymes catalyze the cleavage of the 
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β-1,3-glucosidic bonds in β-1,3-glucan (Simmons 1994) which is another major struc-
tural component of the cell walls of many pathogenic fungi (Adams 2004). β-1,3-
Glucanases play an important role in plant defense and other physiological functions 
such as cell division and cell elongation (Fulcher et al. 1976), fruit ripening (Meins 
et al. 1992), pollen germination and tube growth (Meikle et al. 1991), fertilization (Ori 
et  al. 1990), somatic embryogenesis (Helleboid et  al. 2000), seed germination 
(Buchner et al. 2002), and flower formation (Akiyama et al. 2004). The role of plant 
β-1,3-glucanases as an important component of plant defense mechanisms against 
pathogens has been well documented (Legrand et al. 1987; Cordero et al. 1994). It has 
been postulated that β-1,3-glucanases hydrolyze fungal cell walls, which consequently 
causes the lysis of fungal cells when defending against fungi. On the pathogen encoun-
ter, β-1,3-glucanases also cause the formation of oligosaccharide elicitors, which 
elicit the production of other PR proteins or low molecular weight antifungal com-
pounds, such as phytoalexins (Klarzynski et al. 2000).

β-1,3-Glucanase genes have been reported from a wide range of plant species, 
and many studies have shown that the synthesis of β-1,3-glucanases is stimulated by 
pathogen infections (Alonso et al. 1995; Roulin et al. 1997) and can change during 
plant development (Wyatt et al. 1991). Different plant species may have different 
β-1,3-glucanase genes, and a single plant species may have various copies of β-1,3- 
glucanase genes. Plant β-1,3-glucanases were classified into two major classes I and 
II and two minor classes based on their amino acid sequence, structural properties, 
and cellular localizations (Beerhues and Kombrink 1994). Generally, β-1,3- 
glucanases are stress regulated, but a few β-1,3-glucanases are exclusively develop-
mentally regulated and do not show a stress-related regulation (Bucciaglia and 
Smith 1994; Sharma 2013). β-1,3-Glucanases are usually expressed at low concen-
tration in plants, but when plants are challenged by fungal, bacterial, or viral patho-
gens, β-1,3-glucanases enzyme accumulate dramatically (Castresana et  al. 1990; 
Lusso and Kuc 1995). Class I β-1,3-glucanases and class I chitinases showed syner-
gistic effect in pathogen defense. Class I β-1,3-glucanase accumulated only at the 
site of tobacco mosaic virus (TMV) infection in tobacco plants, while class II and 
III β-1,3-glucanases accumulated both at the site of infection and systemically 
(Vögeli-Lange et al. 1994; Livne et al. 1997). Many reports showed that the tran-
script levels of glucanases accumulated after infected with pathogens, such as bar-
ley infected by powdery mildew (Ignatius et  al. 1994), maize infected with 
Aspergillus flavus (Lozovaya et al. 1998), pepper infected with Xanthomonas camp-
estris pv. vesicatoria and Phytophthora capsici (Jung and Hwang 2000), wheat 
infected with Fusarium graminearum (Li et  al. 2001), chickpea infected with 
Ascochyta rabiei (Pass.) Labr. (Hanselle and Barz 2001), and peach infected with 
Monilinia fructicola (Zemanek et al. 2002). β-1,3-Glucanases and other PR protein 
induction in the plant can also occur due to some elicitors, including fungal β-glucan, 
chitin, chitosan, glycoproteins, and N-acetylchito oligosaccharides (Chang et  al. 
1992; Kaku et al. 1997), or by other factors, for example, salicylic acid-induced 
accumulation of mRNAs of class II and III β-1,3-glucanases in wild-type tobacco 
plants (Ward et al. 1991), abscisic acid (ABA) in tobacco (Rezzonico et al. 1998), 
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and methyl jasmonate, ethylene, and gibberellin A3 in tomato seeds and leaves (Wu 
and Bradford 2003). Stress factors like wounding, drought, exposure to heavy met-
als, air pollutant ozone, and ultraviolet radiation can also upregulate β-1,3- 
glucanases in some plants (Thalmair et al. 1996; Fecht-Christoffers et al. 2003).

12.3  Role of PR Proteins in SAR and HR

PRs are most common in hypersensitive responses but appear to contribute to SAR 
also. An induced systemic resistance (ISR) can be induced by nonpathogenic rhizo-
bacteria, considerably modified the relationships between necrotic lesion formation, 
PRs, and SAR.  ISR induction with these rhizobacteria shows no symptoms in 
plants; however, this resistance is independent of the production of salicylic acid 
(SA) by the plant and is not associated with the accumulation of PRs (Pieterse et al. 
1996; Van Loon et al. 1998). This indicates that plants can substantially enhance 
their defensive capacity against variety of pathogens in either SA-dependent or 
independent way (Pieterse and Van Loon 1999). SAR is mainly SA-dependent 
(Ryals et al. 1996) while ISR is SA-independent. Until now the mechanism involved 
in ISR has been unclarified. At least in Arabidopsis, similar to SAR, ISR depends 
on the functioning of the npr1 gene, which in turn distinguishes ISR from the JA- 
and ethylene-dependent inducible defense response pathway effective against 
Alternaria brassicicola, which is independent of npr1. PRs are often associated 
with SAR, but not with ISR, which have led to hypothesize that PR accumulation is 
not a prerequisite for the induction of resistance, but they contribute to the protec-
tive state (Van Loon 1997). The JA- and ethylene-dependent pathway induced by, 
and effective against, A. brassicicola involves increase in SA, JA, and ethylene lev-
els resulting in detection of PRs in the infected plants. The differential expression of 
various PRs determines the extent of the plant’s response and its effectiveness to 
inhibit further infection. Recent report shows that SA-dependent expression of 
PR-1, PR-2, and PR-5 is required for increased protection against the biotrophic 
fungus Peronospora parasitica in Arabidopsis, whereas SA-independent but 
JA-dependent induction of PR-3 and PR-4 is associated with the induced resistance 
against the necrotrophic fungi A. brassicicola (Penninckx et al. 1996), Botrytis cine-
rea (Thomma et al. 1998), and Fusarium oxysporum f.sp. matthiolae (Bohlmann 
et al. 1998). These results suggest that PRs appear to contribute differentially to the 
induced resistance against different pathogens.

12.4  Signaling Involved in Pathogen-Induced Expression 
of PRs

The pathogen-activated PR gene expression plays a critical role in plant defense against 
pathogens. Regulation of PR gene expression has always been a highly active research 
area since the time PR proteins were discovered. However, the signaling behind the 
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pathogen-induced PR gene expression is still poorly understood in plants. This is partly 
due to the complexity of environmental stimuli and stimulation by phytohormones that 
can induce the expression of various PR genes (Brederode et al. 1991).

12.5  Signals and Putative Receptors Involved in PR Gene 
Expression

During plant-pathogen interactions, a number of molecules derived from pathogens 
can serve as elicitors for PR gene induction such as chitin fragments and glucans 
from fungal cell wall, extracellular glycoproteins/peptides from few fungal species, 
oligosaccharides and harpins from bacteria, and Avr proteins derived from bacterial 
and fungal pathogens (Boller and Felix 1996). Though a large number of signals are 
known to induce PR gene expression, no receptors have been unambiguously estab-
lished for these signal molecules. For example, β-glucan elicitor (GE) is released 
from Phytophthora sojae cell wall by β-1,3-glucanase from soybean and reportedly 
induces phytoalexin biosynthesis (Darvill and Albersheim 1984). Recently, a 
GE-binding protein (GEBP) has been purified from soybean whose antiserum par-
tially inhibited the binding of GE to soybean membrane proteins and reduced the 
phytoalexin accumulation elicited by GE. Another set of elicitors is the polypeptide 
encoded by pathogen avirulence (avr) genes. Any pathogen containing a particular 
avr gene is recognized by the corresponding resistance (R) gene of the host plant and 
activates a variety of defense responses in the host, including increased PR gene 
expression. In the past decade, a number of R genes and avr genes have been iso-
lated. For example, an elicitor encoded by the avr9 gene from Cladosporium fulvum, 
a fungal pathogen of tomato, rapidly activated the transcription of glucanase and 
chitinase genes in plants carrying the cognate R gene Cf9 (Ashfield et  al. 1994; 
Wubben et al. 1996). Another fungal elicitor, NIP1 protein from the barley pathogen 
Rhynchosporium secalis is known to activate PR genes (Rohe et al. 1995). The only 
evidence that an Avr protein directly interacts with an R gene product comes from the 
study of bacterial speck disease in tomato. Tomato plants having R gene Pto, encod-
ing cytoplasmic kinase, are resistant to the bacterial pathogen Pseudomonas syringae 
pv. tomato carrying the avrPto gene (Martin et al. 1993). The Pto and AvrPto pro-
teins showed a highly specific association in yeast too (Scofield et al. 1996; Tang 
et al. 1996). The results confirmed Pto as the receptor for the AvrPto protein.

12.6  Different Pathways for PR Genes’ Activation 
by Pathogens

Plants often exhibit increased production of reactive oxygen species (ROS), sali-
cylic acid (SA), ethylene, and jasmonates upon infection by pathogens (Hammond- 
Kosack and Jones 1996; Yang et al. 1997). These molecules may serve as secondary 
signals to activate plant defense, and many of these reportedly work as inducers for 
PR gene expression. For example, SA induces acidic PR genes that are normally 
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activated during SAR, whereas ethylene and jasmonates are known to induce pro-
teinase inhibitors, defensin, thionin, and basic PR proteins (Brederode et al. 1991; 
Ward et al. 1991; Epple et al. 1995; Donnell, et al. 1996; Penninckx et al. 1996). 
However, the involvement of secondary messengers in the PR gene induction is 
uncertain in majority of studies. Cross talks are often common between signaling 
pathways mediated by these secondary messengers. The use of signaling pathway 
mutants would be supportive in clarifying the roles of these secondary messengers 
in plant defense responses against pathogen attacks.

12.7  Functions and Relevance of PR Expression in Disease 
Resistance

In the last decades, proteinase, peroxidase, ribonuclease, and lysozyme activities 
were assigned to PR-7, PR-9, PR-10, and PR-8, respectively. Also, membrane- 
permeabilizing functions are characteristic of defensins (PR-12), thiols (PR-13), 
lipid transfer proteins (LTPs, PR-14), and of osmotins and thaumatin-like proteins 
(PR-5). Multiple enzymatic, structural, and receptor functions are reported in ger-
mins (PR-15) and germin-like proteins (PR-16) (Van Loon and Van Strien 1999; 
Bernier and Berna 2001; Selitrennikoff 2001; Park et al. 2004a, b). Besides this, 
some PRs also exhibited antibacterial, insecticidal, nematicidal, and antiviral action, 
though an important common feature of most PRs is their antifungal effect. Their 
hydrolytic, proteinase inhibitory, and membrane-permeabilizing ability made them 
toxic to pathogens. Thus, hydrolytic enzymes (β-1,3-glucanases, chitinases, and 
proteinases) can effectively weaken and decompose fungal cell walls, containing 
glucans, chitin, and proteins, while PR-8 can damage gram-positive bacteria due to 
lysozyme activity (Van Loon and Van Strien 1999; Selitrennikoff 2001). The defen-
sive functions of PRs against pathogens can be attributed to a number of their inge-
nious properties; their constitutive expression in seeds and plant organs, high 
fungitoxicity of seed osmotins and thaumatin-like proteins (Vigers et al. 1992; Abad 
et al. 1996), their accumulation in plant cell wall appositions formed against patho-
gen invasions (Jeun 2000; Jeun and Buchenauer 2001). Inspite of all studies and 
reports, the defensive mechanism of PR function against pathogen attack is still 
unclear. The protective role of PRs is supported by following evidences:

 (a) Transcript accumulation of PRs in pathogen-tolerant and susceptible plants. 
Recently, the differential responses of resistant/susceptible plants were reported 
in tomato plants, inoculated with Cladosporium fulvum (Wubben et al. 1996), 
Phytophthora infestans-infected potato (Tonón et al. 2002), Venturia inaequalis- 
inoculated apple (Poupard et al. 2003), Pseudomonas syringae-infected grape-
vine (Robert et  al. 2001), Xanthomonas campestris pv. vesicatoria, and 
TMV-Po-infected hot pepper (Park et al. 2004a, b).

 (b) The plants with high natural disease resistance constitutively express PRs. This 
correlation has been proved in many pathosystems, such as apple-Venturia 
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inaequalis (Gau et al. 2004), tomato-Alternaria solani (Lawrence et al. 2000), 
and potato-Phytophthora infestans (Vleeshouwers et al. 2000).

 (c) Overexpressing PRs in transgenic plants results in increased resistance to 
pathogens. Tobacco overexpressing PR1a gene showed increased tolerance to 
Peronospora tabacina and Phytophthora parasitica var. nicotianae (Alexander 
et al. 1993). Similarly, overexpression of thaumatin-like PR-5 in transgenic rice 
and orange plants showed increased tolerance to Rhizoctonia solani and 
Phytophthora citrophthora, respectively (Datta et  al. 1999, Fagoaga et  al. 
2001); transgenic potato overexpressing PR-2 and PR-3 had improved resis-
tance to Phytophthora infestans (Bachmann et al. 1998); transgenic carrot over-
expressing PR-2 and PR-3 genes, coding for β-1,3-glucanase and chitinase, 
respectively, showed increased resistance to several fungal pathogens; and the 
transgenic tomato simultaneously expressing tobacco β-1,3-glucanase and chi-
tinase genes had improved resistance to fungal pathogens (Melchers et  al. 
1998).

 (d) Accumulation of PRs in plants with locally or systemically induced resistance. 
As discussed before, PRs are identified as markers of the systemic acquired 
resistance (SAR). SAR and the associated set of PRs are induced by different 
pathogens and various chemicals predominantly in a salicylic acid-dependent 
pathway. It is important to note that the direct role of PRs in disease resistance 
is being suggestive by their high expression in resistant or SAR-expressing 
plants, as well as transgenic resistant plants exhibiting high antimicrobial activ-
ity (Rauscher et al. 1999; Tonón et al. 2002; Anand et al. 2004).

12.8  Transcriptional Regulation of PR Gene Expression

The most active area in PR gene research is to study its transcriptional regulation. 
Several cis-regulatory elements mediating pathogen-induced PR gene expression 
have been identified and characterized through traditional promoter deletion analy-
sis coupled with mutagenesis of putative regulatory elements, gain-of-function 
studies with synthetic promoters, and DNA-fingerprinting analysis (Yang et  al. 
1997; Rushton and Somssich 1998). Many of these elements are W-box (consensus 
TTGACC or TGAC-[N]x-GTCA), GCC-box (consensus AGCCGCC), MRE-like 
sequence (consensus A[A/C]C[A/T]A[A/C]C), G-box (consensus CACGTG), and 
SA-responsive element (SARE, with a consensus of TTCGACCTCC). Among all, 
the GCC-box and W-box have been extensively studied and have a wide role in PR 
gene regulation (Hart et  al. 1993; Ohme-Takagi and Shinshi 1995). Defense 
responses mediated by ethylene are often associated with GCC-box and are known 
to confer ethylene-induced transcription of the tobacco gln2 gene encoding a β-1,3- 
glucanase (Ohme-Takagi and Shinshi 1995). EREB clones (1–4) were identified in 
tobacco cDNA library with radiolabeled GCC-box as probe (Ohme-Takagi and 
Shinshi 1995). EREBP transcripts are induced by ethephon, a compound known to 
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release ethylene upon its degradation that suggests that ethylene further induces the 
expression of EREBP genes. The EREBP-1 gene was reportedly induced by 
Pseudomonas bacteria and SA, suggesting a role of this gene in plant defense (Zhou 
et al. 1997; Horvath et al. 1998). The direct correlation of the EREBP proteins with 
a disease-resistance pathway was confirmed by the study of the signaling pathway 
mediated by the tomato gene Pto (Zhou et al. 1997). Phosphorylation also plays an 
important role in the activation of PR gene expression during pathogen attacks (Raz 
and Fluhr 1993). Another highly conserved cis-element, W-box, is present in pars-
ley PR1-1 and PR1-2 (both encoding the PR1 protein), tobacco CHN50 (encoding a 
class I basic chitinase), asparagus AoPR1 (encoding the PR10 protein), potato 
PR-10a (encoding the PR10 protein), and maize PRms (encoding the PR1 protein). 
Besides PRs, W-box is also present in the promoter of other pathogen inducible 
genes such as the potato glutathione S-transferase gene prp1 and the grape phyto-
alexin synthesis gene Vst1, suggesting a broader role for this element in pathogen- 
induced gene expression (Rushton and Somssich 1998). Three parsley cDNAs 
encoding W-box-binding proteins were identified by using a south-western screen-
ing (Rushton et al. 1996). These proteins are termed WRKY family proteins and 
contain the consensus sequence, WRKYGQK.  Since the in  vivo function of the 
cloned transcription factors is still to be worked upon, so rigorous tests on trans-
genic plants with altered expression of the transcription factor genes are required to 
establish their roles in PR gene expression and defense responses. In addition, it is 
necessary to answer few questions. How different signals affect PR gene expres-
sion? Do different signals converge on the same transcription factor? Do these tran-
scription factors interact? Answering these questions help us in better understanding 
of cross talks between different signaling pathways.

12.9  Conclusions

PR proteins and their homologues are generally responsible for the defense against 
various stresses including pathogen attacks, wounding, use of chemicals, and pol-
lutants. However, many PR proteins (members of PR 1, 2, 3, 4, 5, 8, 10, and 14 
families) have demonstrated allergenicity, but the allergenicity is also guided by 
several environmental factors like the use of chemical inducers in agriculture and 
environmental pollutants. Recent reports have documented their critical importance 
as preservative agents in food industry and for producing disease-resistant plants by 
genetic engineering. Various studies have revealed that transgenic plants overex-
pressing PR genes mediate host plant resistance to phytopathogenic fungi. Such 
genetically modified (GM) plants with enhanced expression of PR proteins may be 
associated with increased allergenicity and toxicity, thus raising a serious question 
for their commercial acceptability, so different strategies are adopted to monitor the 
transformed crops for their allergenicity.
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13Antimicrobial Compounds and Their 
Role in Plant Defense

Anupama Razdan Tiku

Abstract
Plants are important nutrient source for several organisms like microbes, hetero-
trophic plants, insects as well as vertebrates. Even though they lack a proper 
defense mechanism like animals, still they have developed a mixture of chemi-
cals which are mainly protein based and are used as a means of defense by 
detecting attacking organisms and preventing them from causing major damage. 
In order to protect themselves from these microbes like fungi, bacteria, etc., plant 
cells have developed the capability to identify attacking pathogens and use 
inducible defense mechanism by producing toxic chemicals or antimicrobial 
compounds in the form of pathogen-degrading enzymes and secondary metabo-
lites involved with plant defense. Secondary metabolites generally are grouped 
into three major classes of chemicals, i.e. terpenoids, phenolic and alkaloids. 
Some of these antimicrobial compounds are constitutive in nature, i.e. they occur 
in biologically active forms in healthy plants, whereas other metabolites are 
inductive in nature. Glucosinolates and cyanogenic glycosides exist in inactive 
form and are activated as a response to attack by pathogen or tissue damage. 
These compounds are activated by release of plant enzymes at the time of break-
down of cells. Preformed antimicrobial compounds are termed as “phytoanti-
cipin”, while “phytoalexins” are those antimicrobial compounds which are 
synthesized (as a result of synthesis of enzymes) from precursors as a response 
to attack by pathogen. Preformed inhibitors are usually tissue specific and are 
mainly present in the outer layers of the cells of plant organs. These inhibitors are 
mostly successful against comprehensive range of probable pathogens, and spe-
cific virulent pathogens might circumvent the effect of these secondary metabo-
lites by eluding them or by enduring or by detoxification. Most of these 
constitutive plant compounds show antifungal activity, e.g. phenols, phenolic 
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glycoside, unsaturated lactones, sulphur compounds, saponins, etc. 
“Phytoalexins” are the most considered antimicrobial plant defense compounds. 
These compounds are pathogen specific and therefore more effective in plant 
defense mechanism. Transcriptional and translational activities in a plant are pre-
requisite for the production of phytoalexins. Examples of these antimicrobial 
phytoalexins are scopoletin, camalexin, glucosinolates, etc. This chapter will 
mainly discuss the role of both phytoanticipins and phytoalexins as plant defense 
antimicrobial compounds and also their use as “antibiotic potentiators” and viru-
lence attenuators along with their role in crop protection/phytoprotection.

Keywords
Defense mechanism · Secondary metabolites · Phytoalexins · Phenolics ·  
Toxins and alkaloids

13.1  Introduction

All plants growing in natural habitats are surrounded by a large number of antagonists 
including variety of microbes, nematodes, insects and herbivores and various kinds of 
abiotic environmental stress which are major sources of hindrance for crop yield. 
Plants have evolved with a wide variety of inherent and stimulative defense mecha-
nisms to shield themselves from their potential enemies (Cowan 1999). Inherent 
defense includes many preformed obstructions including cell wall, bark and cuticular 
wax to protect the plant from attack of pathogens. Plants use stimulative defense 
mechanism including production of toxic chemicals, enzymes which degrade patho-
gens and cell suicide to protect themselves from attacking pathogens. Research on the 
role of these chemicals acting as plant defense compounds took off in the mid of the 
nineteenth century, e.g. Muller and Borger introduced phytoalexins based on their 
observation of Phytophthora infestan infection in potato tubers. Plant cells showed 
inhibition towards the pathogen by producing a chemical which reacted hypersensi-
tively and was named as phytoalexin (Jeandet et al. 2014a, b; Jeandet 2015).

Plant compounds are identified as primary metabolites and secondary 
metabolites.

Primary metabolites (sugars, amino acids, nucleic acids) are involved in growth, 
development or reproduction, whereas secondary metabolites serve as toxic chemi-
cals or defense-related proteins (Freeman and Beattie 2008). Plants produce diverse 
varieties of secondary metabolites using resultants of primary metabolisms includ-
ing enzymes involved in various metabolic pathways and major biomolecules of the 
cell (Table  13.1) (Fig.  13.1). These are used to protect plants against invading 
microbial pathogens on account of their toxic nature. Some of them are as well 
involved in protection of plants from abiotic stress (such as UV-B exposure) and 
also used for communication between plants and other organisms (including attract-
ing useful organisms like pollinators) or hostile interactions (such as restraint 
against pathogens and herbivores) (Schafer and Wink 2009).
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The three major types of secondary metabolites are terpenes/terpenoids, pheno-
lics and nitrogen- and sulphur-containing compounds produced mostly from com-
mon amino acids. Terpenes are formed from 5-C isopentanoid units, which are toxic 
in nature and hence discourage many herbivores from eating the plants. Phenolics 
produced mainly from shikimic acid pathway are vital to protect the plants from 
invading microbial pathogens and fungi. Their defensive roles have been confirmed 
by in vitro experiments conducted by changing expression of secondary metabolites 
of plants using modern molecular methods (Mes et al. 2000; Van Etten et al. 2000). 
Studies have shown that around 200,000 secondary metabolites produced by plants 
are part of biochemical protective systems of plants, evolved over millions of years 

Fig. 13.1 Structures of common antimicrobial plant chemicals
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during which the respective plants and their foes have existed together (Wink 1999). 
Due to high energy and nutrient requirements required for production and mainte-
nance of secondary metabolites, plants normally wait till the time pathogens are 
detected to produce toxic chemicals/defense-related proteins. Hence, plant defense 
chemicals can be grouped into two types which are constitutive metabolites and 
induced metabolites. Constitutive metabolites are also known as “prohibitins” or 
phytoanticipins. Induced metabolites, also known as phytoalexins, are formed to 
protect the plant from infection involving synthesis of enzymes (complex mole-
cules) from simple molecules (Van Etten et al. 1994; Grayer and Harborne 1994).

Phytoanticipins consume large amount of carbon and energy exhibiting fitness 
cost under natural conditions. They are accepted as the primary chemical defense 
that a pathogen has to overcome, whereas production of phytoalexin takes up to 
2–3 days, as enzyme synthesis is required for converting their precursors into the 
desired defense protein (Hammond-Kosack and Jones 1996). Moreover the same 
type of secondary metabolites/toxic chemicals exists in plants belonging to the 
same species or taxonomically related species. We will discuss possible types/
groups of secondary metabolites acting as antimicrobial compounds used in plant 
defense mechanism in this chapter.

13.2  Terpenes/Terpenoids

They exist in almost all the plants representing the biggest group of secondary 
metabolites. There are more than 22,000 compounds described as terpenes, and they 
are grouped together based on their common biosynthetic origin from glycolytic 
intermediates or acetyl-CoA (Mazid et  al 2011). Hydrocarbon isoprene (C5H8) 
which is a volatile gas produced during photosynthesis can protect cell membrane 
from damage due to extreme temperature or light conditions. It is the simplest form 
of terpenoid. Terpenoids are classified on the basis of number of the isoprene units 
which are used in their construction, for example, monoterpenoids (two isoprene 
units), sesquiterpenoids (three isoprene units), diterpenoids (four isoprene units) 
and triterpenoids (six isoprene units). Terpenes are assumed to be intricate part of 
plant defense mechanism in the form of toxins and feeding restraint to many insects 
and herbivores (Gershenzon and Croteau 1991). They are also active against bacte-
ria, fungi and protozoa, for example, pyrethrins, menthol, camphor, farnesol and 
artemisinins. Capsaicin present in chilli peppers has bactericidal properties. Below 
several examples will be discussed from five major subclasses of terpenes.

13.2.1  Monoterpenes (C10)

Monoterpenes along with its derived compounds are vital representatives of insect 
toxicity, for example, pyrethroids/pyrethrins (monoterpene esters) exist in the leaves 
and flowers of chrysanthemum species presenting robust insecticidal reactions 
(neurotoxin) towards insects like bees, beetles, wasps, moths, etc. They are key 
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elements of commercial insecticides. Monoterpenoids as well as sesquiterpenoids 
are the key elements of highly volatile compounds and essential oils, which are the 
reason for the fragrance of plants producing them. They are insect toxins and pre-
vent bacterial and fungal infections in the plant. For example, mint plants (Mentha 
spp.) produce huge quantity of monoterpenes (menthone and menthol), formed and 
stored in glandular trichrome present in epidermal cells. In gymnosperms (conifers) 
like fir, lime and pine, monoterpenes collect in resin ducts of needles, twigs and 
trunk primarily in the form of alpha-pinene, beta-pinene, limonene and myrcene 
which are potent insect repellents effecting bark beetles and other serious pests of 
conifer species (Turlings et al. 1995).

13.2.2  Sesquiterpenes (C15)

Many sesquiterpenes have been reported till now, and the part they play in plant 
defense is mainly of anti-herbivore representatives belonging to Asteraceae family 
classified by a lactone ring with five members (a cyclic ester) having tough feed 
repelling properties affecting several insects and herbivores.

ABA is a well-known example of sesquiterpene playing important role as a plant 
hormone. In cotton four different sesquiterpenoid phytoalexins, desoxyhemigossy-
pol, hemigossypol, desoxy-6-methoxygossypol and 6-methoxygossypol (Garas and 
Waiss 1986), help the plant to fight against fungus Verticillium dahliae. Resistant 
varieties of tobacco with Phytophthora had induction of sesquiterpenoid phytoalex-
ins like capsidiol, rishitin, etc.

13.2.3  Diterpenes (C20)

Abietic acid, a significant diterpene, mostly exists in resin canals of tree trunks of 
legumes and pine trees. Toxic resin serves as chemical deterrent against the feeding 
insects which pierce these canals. Phorbol (an ester) is another example of diterpene 
which is present in members of Euphorbiaceae and proves to be a skin irritant as 
well as toxic for feeding herbivores. Gossypol (Fig. 13.2) which has tough antifun-
gal and antibacterial characteristics is produced by cotton (Gossypium hirsutum) 
(Bennett and Wallsgrove 1994).

13.2.4  Triterpenes (C30)

Triterpene structures are quite similar to plant and animal steroidal hormones and 
sterols. The milkweeds generate numerous bitter-tasting glycosides, i.e. sterols 
which protect the plants against insects and herbivores. Limonoid is a bitter sub-
stance in citrus fruits and serves as anti-herbivore compounds present in family 
Rutaceae. Azadirachtin (Fig. 13.3), a complex limonoid, is present in Azadirachta 
indica, which restrains some insects from feeding on the plant and also protects the 
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plant from microbial infections (Mordue and Blackwell 1993). Foxglove (Digitalis 
purpurea) also produces glycosides known as digitoxin and digoxin (Fig. 13.4).

13.2.5  Polyterpenes (C5)n

These are high molecular weight terpenes, for example, rubber has many polyter-
penes showing antimicrobial properties. Rubber is found in long vessels known as 
laticifers made up of 1500–15,000 isopentenyl units having nearly all C-C double 
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bonds with cis (Z) configuration. Another example is gutta rubber which has its 
double bonds in trans (E) configuration (Eisner and Meinwald 1995). Few polyter-
penes (tetraterpenes) effect growth, e.g. hormone gibberellic acid, and also contrib-
ute to red, yellow and orange pigments (carotenoids).

13.3  Saponins

Saponins exist in large concentration in healthy plants exhibiting strong antifungal 
activity. These molecules have been found to be determinants of plant resistance to 
fungal attack (Osbourn 1996). These compounds also exhibit other properties like 
piscicidal, insecticidal and molluscicidal. Saponins are triterpenoids with attached 
sugar group, i.e. glycosylated triterpenoids which exist in membranes of cell of 
several species of plants. Having detergent properties they disrupt the membranes of 
cells of attacking fungal pathogens. Saponins are classified into three major groups 
based on the types of aglycone which are triterpenoid, a steroid or a steroidal gly-
coalkaloid. Saponins exist in the form of triterpenoid saponins mostly in dicotyle-
donous plants and also in few monocots, while steroid saponins exist mostly in 
monocots, for example, plants belonging to family Agavaceae, Liliaceae, 
Dioscoreaceae, etc. Saponins in the form of saponin digitoxin mostly exist in dicots, 
for example, foxglove. Avena has both the types mentioned above (Price et  al. 
1987). Saponins in the form of steroidal glycoalkaloids exist mostly in Solanaceae 
family (potato, tomato, etc.) along with Liliaceae family. Saponins found in oats and 
tomato and their function in defense of plants against phytopathogenic fungi have 
been studied in detail (Osbourn 1996).

Some vital saponins involved in antimicrobial activity are avenacins and avena-
cosides (mainly present in oats and related species like Arrhenatherum elatius). 
Avenacins exist only in roots, while avenacosides exist in roots as well as shoots. 
Avenacosides which are inactive biologically are transformed into antifungal 
monodesmosidic saponin 26-desglucoavenacosides. Oats are able to resist root-
infecting fungus because of the presence of triterpenoid avenacin saponins. 
Gaeumannomyces graminis var. tritici is not able to infect oat plant even though it 
wreaks havoc to wheat and barley plant because of the presence of avenacins 
(Fig. 13.5a).

One of the major saponin, α-tomatine (Fig. 13.5b), a monodesmosidic steroidal 
glycoalkaloid, exists in its biologically active form in a healthy plant. It safeguards 
the tomato plants from both Verticillium albo-atrum (Pegg and Woodward 1986) 
and vascular wilt fungi Fusarium oxysporum f.sp. lycopersici (Smith and Machardy 
1982). Saponins prove to be toxic for fungi as a result of the ability of saponins to 
associate with sterols present in membrane leading to formation of pores (Price 
et al. 1987; Fenwick et al. 1992). Actions of saponins like α-tomatine are dependent 
upon pH, but some fungi render the saponins ineffective by altering the pH at the 
infection site. Plants have developed a mechanism to safeguard themselves from 
their own saponins by placing them in the vacuole or in other organelles, whose 
membranes can avoid lysis because of low or altered sterol composition.
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13.4  Phenolics

Phenolics are a big class of secondary metabolites formed by plants to safeguard 
themselves against pathogens. They are created mostly via shikimic acid and malo-
nic acid pathways in plants, comprising extensive variety of protective metabolites 
such as furanocoumarins, lignin, anthocyanins, flavonoids, tannins and 
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phytoalexins. These secondary products play a vital part in plant defense mecha-
nism against threats like fungi, bacteria and nematodes as well as restraint herbi-
vores from feeding the plant (Mazid et al. 2011). They contain phenol which is a 
hydroxyl functional group on an aromatic ring named phenol (Fig. 13.6).

13.4.1  Coumarin

Simple phenolic compounds made up of fused benzene and α-pyrone rings occur 
extensively in vascular plants. They protect various plants in many ways against 
threats from insects and fungi. They are mostly derived through shikimic acid path-
way and are involved actively against wide range of microbes (Brooker et al. 2008). 
These cyclic compounds behave as natural pesticides for plants and represent a 
point from where the exploration of new derivatives which possess a range of 
enhanced antifungal activity can start. Derivatives of halogenated coumarin operate 
efficiently against fungal growth, for example, 7-hydroxylated simple coumarin 
works against Orobanche cernua preventing its penetration and germination in host 
vascular system. Some coumarins also show high defense activity against soilborne 
plant pathogenic fungi (Brooker et al. 2008). Hydroxycinnamic acid, related to cou-
marins, shows inhibition towards gram-positive bacteria. Phytoalexins which are 
hydroxylated derivatives of coumarins formed in carrots show antifungal activity.

13.4.2  Furanocoumarin

A wide variety of plants produce furanocoumarins which are phenolic compounds. 
Plants belonging to family of Apiaceae usually produce these compounds. These 
phenolic compounds become toxic only when activated by light (UV-A), and they 
get integrated into the pyrimidine bases of DNA of vertebrate and invertebrate her-
bivore causing rapid cell death due to blocked transcription and repair mechanism. 
Psoralen is a basic furanocoumarin used against fungi (Fig. 13.7).
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Fig. 13.6 Structure of important phenolics
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13.4.3  Lignin

Branched polymer of phenylpropanoid groups exists primarily in the secondary cell 
walls of plants. Three different types of alcohols which are coniferyl, coumaryl and 
sinapyl oxidize to free radicals (ROS) by a ubiquitous plant enzyme – peroxidase – 
which reacts randomly as well as simultaneously to produce lignin. The reactive 
proportions of these three monomeric units in lignin fluctuate among species, plant 
organs and even different layers of single cell wall (Lewis and Yamamoto 1990). 
These phenolic monomers are present hundred or thousand times in the structure of 
lignin and constitute the main component of wood. It is insoluble, rigid and virtually 
indigestible therefore serving as exceptional physical wall against attack by patho-
gens. The physical toughness and chemical durability of lignin causes it to be 
impossible for herbivores and insect pathogens to digest it. Lignification prevents 
the development of pathogens and microbes and is formed frequently during infec-
tion or wounding.

13.4.4  Flavonoids

Flavonoids, which are one of the biggest classes of plant phenolics, perform diverse 
roles from pigmentation to defense mechanism of plants. Flavones and flavonols are 
two main groups of flavonoids present in flowers. They protect the cells from harm-
ful UV-B radiation by accumulating in epidermal layers of stems and plants (Lake 
et al. 2009). Anthocyanins as well as colourful water-soluble flavonoid pigments are 
formed by plants to protect their foliage from UV damage. They are hydroxylated 
phenolic substances existing as C6−C3 unit connected to an aromatic ring, produced 
by plants in response to microbial infection. Because of their capability to complex 
with extracellular and soluble proteins and bacterial cell wall proteins, they can act 
against extensive range of microorganisms. Lipophilic flavonoids, often pathogen 
specific in their toxicity, disrupt cellular structure, microbial membranes and patho-
gen metabolism. An example is catechin, a flavonoid occurring in leaves of oblong 
green tea. Tea leaves showing antimicrobial activity have mixture of catechin com-
pounds working against various bacteria and microorganisms, for example, Vibrio 
cholerae, Streptococcus mutans, Shigella, etc. Phloretin existing in some varieties 
of apples displays action against many varieties of microorganisms. Galangin which 

Psoralen, furanocoumarin
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is produced from Helichrysum aureonitens (a perennial herb) is effective against 
extensive array of gram-positive bacteria as well as microbes and fungi.

13.4.5  Isoflavonoids

Isoflavonoids play a vital role in development of plant as well as defense mecha-
nism. Their precursor is naringenin which is a flavanone intermediate, present in 
plants. They play a vital part in the formation of nitrogen-fixing nodules by symbi-
otic rhizobia and are secreted by legumes (Sreevidya et al. 2006). Phytoalexins are 
isoflavonoids, produced in response to pathogen attack having antibiotic and anti-
fungal characteristics. These pathogen-specific, toxic compounds unsettle cellular 
structure and metabolism of pathogen, for example, medicarpin which is formed by 
alfalfa (Medicago sativa), rishitin also a toxin formed in tomatoes as well as pota-
toes (family Solanaceae) and camalexin formed by Arabidopsis thaliana.

13.4.6  Tannins

Tannins are group of polymeric phenolic substances which have the property of 
astringency which gives the ability to tan leather or precipitate gelatin from solu-
tion. They exist mostly in various plant parts like roots, bark, wood, fruits and 
leaves. Tannins are grouped into two types, hydrolyzable and condensed tannins. 
Hydrolyzable tannins are based on gallic acid (multiple aster of D-glucose), while 
flavonoid monomers are precursors of condensed one which are also known by the 
alias “proanthocyanidins”. Condensed flavan derivatives in plant woody tissues and 
polymerization of quinone units are also known to form tannins. These phenolics 
are water soluble and mainly stored in vacuoles of cell. Tannins combine with sali-
vary proteins and digestive enzymes of insects and herbivorous animals making the 
insect protein inactive. A herbivore or an insect having large intake of tannins does 
not gain weight and eventually dies. Tannins are capable of binding proteins, for 
example, protocatechuic and chlorogenic acids playing a vital role in disease resis-
tance in certain plants. In onions smudge disease caused by Colletotrichum circi-
nans (fungus) and growth of other fungi is restricted due to formation of these two 
tannins. Some tannin like chlorogenic acid is oxidized into effective quinones show-
ing antifungal properties in case of some disease-resistant plants (Cowan 1999).

13.5  Nitrogen-Containing Secondary Metabolites

Nitrogen-containing secondary metabolites including alkaloids, cyanogenic glyco-
sides and nonprotein amino acids are synthesized from common amino acids and 
are of significant interest due to their anti-herbivore defense role in plants.
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13.5.1  Alkaloids

Alkaloids are the largest family of bitter-tasting nitrogenous compounds (Fig. 13.8) 
present in many vascular plants (20%) (Hegnauer 1988) mostly in herbaceous dicots 
and some gymnosperms and monocots. Pyrrolizidine alkaloids (Pas) are quite toxic 
and help in defense against infection caused by microbes and attack by herbivores. 
They are usually produced from few common amino acids like lysine, tyrosine, aspar-
tic acid and tryptophan (Pearce et al. 1991). Cocoa, coffee and tea contain caffeine 
which is an alkaloid. These are toxic to both insects and fungi. Nicotine, an alkaloid, 
is formed by tobacco plant roots which is further transported to leaves of tobacco plant 
and is stored in vacuoles. Atropine, another neurotoxin and cardiac stimulant alkaloid, 
is formed by lethal nightshade plant (Atropa belladonna) and is highly toxic in large 
quantities. Capsaicin formed by members of genus Capsicum also has antimicrobial 
properties and works actively in plant defense mechanism. Their action involve effect 
on nervous system especially the chemical transmitters, membrane transport system, 
protein synthesis and miscellaneous enzyme activities (Creelman and Mullet 1997). 
Shikimic acid is a precursor for indole and its derivatives, amino acid tryptophan and 
its derivatives (psychedelic compounds, dimethyltryptamine), many alkaloids and 
other aromatic metabolites (Figs.13.9 and 13.10) which play an important part in 
resistance against microbes and fungi and nematodes.

13.5.2  Cyanogenic Glycosides

Hydrogen cyanide (HCN), a lethal chemical that halts cellular respiration in aerobic 
organisms, is produced by breaking down of cyanogenic glycosides (very deadly 
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nitrogenous compounds). When the herbivores feed on the plants that produce cya-
nogenic glycosides, the plant tissue gets damaged which leads to mixing of enzyme 
(including glycosidases and hydroxynitrile lyases) and substrate which are stored in 
separate sections of the healthy plant, producing HCN.  HCN binds itself to the 
Fe-containing heme group of cytochrome oxidase as well as other respiratory 
enzymes causing cellular respiration poisoning. Cyanogenic glycosides are mainly 
present in families Gramineae, Rosaceae and Leguminosae (Seigler 1991). Seeds of 
almond, apricot, cherries and peaches contain a common glycoside called amygda-
lin, whereas Sorghum bicolor contains dhurrin (Poulton 1990). Cassava has a long 
shelf life because of the presence of cyanogenic glycosides. Lima bean (Phaseolus 
lunatus L.) is a classic example of a plant which may be researched to understand 
defense mechanism in plants showing inducible indirect anti-herbivore properties 
achieved by producing VOC, i.e. volatile organic compounds (Ballhorn et al. 2009). 
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Among members of mustard family (Brassicaceae), mustard oil glycosides are pres-
ent which when broken down by thioglucosidase enzymes produce cyanide gas. 
Cyanogenic glycosides are the best example where defenses are produced only in 
reaction to damage to plant tissue or attack by pathogen like “phytoalexins”.

13.5.3  Nonprotein Amino Acids

Several plant species have rare amino acids known as nonprotein amino acids that do 
integrate into proteins but are also present as free forms and act as shielding defensive 
substance (Johnson et al. 1989). For example, azetidine-2-carboxylic acid and cana-
vanine block the synthesis or uptake of protein amino acids. They are close analogs of 
arginine and proline. After consumption, canavanine (NPA) is detected by herbivore 
enzyme that sticks arginine to arginine tRNA molecule and gets assimilated into pro-
tein in place of arginine. Resulting protein is a nonutility one due to its faulty tertiary 
structure or disrupted catalytic site (Rosenthal 1991). Plants which produce nonpro-
tein amino acids do not get harmed themselves due to its toxicity, but they gain defense 
against a wide array of pathogenic microbes, insects and herbivorous animals.

13.6  Sulphur Containing Secondary Metabolites

These metabolites directly or indirectly defend plants against pathogen microbes. 
Defensins, thionins, GSH, phytoalexins and GSL are the examples of sulphur con-
taining secondary metabolites (Saito 2004; Grubb and Abel 2006; Halkier and 
Gershenzon 2006).

13.6.1  GSH

GSH is the main form of organic S which is present as soluble fraction in plants. 
GSH gets amassed in the plant after it is attacked by fungi. Main cellular sections of 
the plant can carry between 3 and 10 mM of GSH. GSH displays properties of an 
antioxidant as well as reducing agent in an effort to diminish the oxidative stress 
(Kang and Kim 2007).

GSH targets and detoxifies xenobiotic and cytotoxins in vacuoles. For synthesis 
of GSH and other phytochelatins involved in heavy metal detoxification, enzymes 
are produced inside specialized epidermal cells like trichomes.

13.6.2  GSL (Glucosinolates)

GSL increases the resistance of higher plants to parasites, predators as well as com-
petitors. They are a group of N and S with low molecular mass and holding plant 
glycosides. The breakdown products which are released in the form of protective 
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volatile substances exhibit lethal or repelling effects (DeVos and Jander 2009), for 
example, allyl sulfoxides in Allium (Leustek and Saito 1999) and mustard oil glyco-
sides in Cruciferae. Myrosinase catalyses the volatiles coming from GSL (Fig. 13.10) 
cleaving glucose from its bond with S atom. Resulting product (aglycone) reorganizes 
the loss of sulphate giving pungent as well as chemically reactive products, which 
includes isothiocyanates (R-N=C=S), thiocyanates and nitriles. These toxic and feed 
repelling products protect the plants from herbivores (Geu-Flores et al. 2009). It pre-
vents various fungal diseases including light leaf spot (Pyrenopeziza brassicae), scler-
otina stem rot (Sclerotinia sclerotiorum) and alternaria (Alternaria brassicae) from 
affecting the plants. The GSL become effective only when it comes in contact with 
myrosinase (a plant enzyme) which happens only if plant tissue gets damaged. (In 
healthy plants both enzymes and glucosinolate substrates are separated from each 
other due to compartmentalization.) The activity of enzymes involved in antioxidant 
defense mechanism may get affected by isothiocyanates, and defense of cell from 
DNA damage and GST activity may get affected because of detoxification from xeno-
biotic (Lipka et al. 2010). These three hydrolysis products are toxic for a wide array 
of fungi, and the breakdown products’ nature depends upon the glucosinolate struc-
ture, myrosinase enzyme existing, the species of plant and variety of factors such as 
protein cofactors, temperature, metal ion concentrations and pH. Resistance of cab-
bage to P. parasitica and resistance of Indian mustard and oilseed rape to L. maculans 
have been associated with high glucosinolate levels. Breakdown products of gluco-
sinolate also have effect on several nonpathogens of Brassica. These compounds are 
used as naturally available fungicides to regulate several pest harvest pathogens and 
cereal diseases related to fruits and vegetables (Mari et al. 1993).

13.6.3  Phytoalexin

Plants synthesize antimicrobial and often antioxidative elements de novo. These 
then accumulate quickly at infected areas affected by pathogen (bacteria or fungi) 
in order to limit the spread of invading microbes (Fig. 13.10). Organic phytoalexins 
produced by most of the plant families have a diverse chemistry, and mostly they are 
grouped under the classes including alkaloids, glycosteroids and terpenoids. The 
examples include isoflavonoids of Leguminosae and sesquiterpenoids of Solanaceae. 
S metabolites are only produced in Cruciferae plant family (Harborne 1999; Gross 
et al. 1994; Monde et al. 2000). The phytoalexins which are produced in the plants 
have a toxic effect on the attacking pathogens because they are responsible for rup-
turing the walls of the cell, delaying maturation, disrupting metabolism and prevent-
ing pathogen reproduction. The plant mutant which is incapable of producing 
phytoalexin experiences widespread presence of pathogens compared to wild plants 
which produce phytoalexin. Production of phytoalexins comes under systemic 
acquired resistance (SAR) or long-term resistance, which involves communication 
between the damaged tissue and the rest of the plant as well as usage and synthesis 
of plant hormones including salicylic acid, abscisic acid, ethylene and jasmonic 
acid. The entire mechanism involves genes that transcribe enzyme involved in syn-
thesis of phytoalexins. Natural phenols such as isoflavonoids, polyphenols as well 
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as associated substances have very important part to play in defense of plant, for 
example, in Vitis vinifera (grape) trans-resveratrol (a phytoalexin) plays a role in 
plant defense against fungal pathogens including Botrytis cinerea, and another phy-
toalexin delta-viniferin is present in grapevine formed during fungal infection by 
Plasmopara viticola. Sakuranetin is a flavonoid type of phytoalexin found in 
Polymnia fruticosa and rice against the pathogen Pyricularia oryzae. 
6-Methoxymellein (a dihydroisocoumarin) is synthesized in carrot slices by UV-c 
gene against the pathogen Botrytis cinerea (Kurosaki and Nishi 1983). Phytoalexin 
danielone exists in papaya fruit displaying extraordinary antifungal activity against 
Colletotrichum gloeosporioides (Echeverri et al. 1997). Stilbenes are a phytoalexin 
produced in Eucalyptus sideroxylon during pathogen attacks.

Allicin with the structure 3-hydroxy-5-methoxy-6-methyl-2-pentyl-4H-pyran-4-
one is the first phytoalexin isolated from garlic (Illic et al. 2011). Allicin is another 
phytoalexin obtained from garlic. It is an organosulfur compound formed when 
alliinase enzyme converts alliin into allicin which also gives aroma to the fresh gar-
lic. Allicin being an unstable compound quickly changes into a series of other 
sulphur- containing compounds such as diallyl disulphide having antibacterial, anti-
fungal, antiviral or antiprotozoal activity. Other examples of associations of phyto-
alexin induction with the resistance in plants are displayed in Table 13.2. Production 
and function of phytoalexins for disease resistance can be restored or enhanced 
through genetic engineering techniques by introducing simple genetic constructs 
carrying phytoalexin synthesizing genes, for example, in grapevine, phytoalexin 
“resveratrol” is synthesized by stilbene synthase (STS) gene. STS genes (Vst1 and 
Vst2) from grapevine were transferred to tobacco through genetic transformation; 
and when the assays were performed in transformed plants, they showed higher 
resistance to B. cinerea (Hain et al. 1993). STS gene responsible for phytoalexin 
production was later transformed from different sources into many plant systems 
like Arabidopsis, papaya, tomato, wheat, barley, rice and alfalfa conferring resis-
tance to various pathogens (Jeandet et  al. 2013). In alfalfa, overexpression of 
enzyme isoflavone 7-O-methyltransferase played a critical part in biosynthesis of 
phytoalexin “maiackiain” which was associated with resistance of the plant to 
Phoma medicaginis He and Dixon (2000). Transformation of soya bean hairy root 
with both AhRS3 (peanut resveratrol synthase 3) and ROMT (resveratrol-0- 
methyltransferase) gene resulted in the resistance of transformed plant against 
Rhizoctonia salami (Zernova et  al. 2014). Cytokinin overexpression in tobacco 
plant resulted in surge of resistance of plant against the pathogen Phytophthora 
syringae due to up- regulated synthesis of capsidiol and scopoletin, the two phyto-
alexins which we involved in the process (Grosskinsky et al. 2011). Similarly in the 
case of Arabidopsis, production of camalexin as well as resistance to B. cinerea was 
severally affected because of the mutation occurring in two MAP kinases (MPK3 
and MPK6) (Ren et al. 2008). Some genes which function as phytoalexin biosynthe-
sis regulators have also been identified, for example, overexpression of Rac protein 
in rice leads to accumulation of phytoalexin momilactone (Ono et  al. 2001) and 
resistance of plant against bacterial blight. Overexpression of non-expressor of 
pathogenesis- related gene 1 induced the biosynthesis of phytoalexin gossypol 
(Parkhi et al. 2010).
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13.7  Proteins and Enzymes

Several plants and their seeds have protein that impedes pathogen and best enzymes 
after developing complexes that would block active sites or modify enzyme confor-
mations. These proteins have small structure and mostly consist of amino acid cys-
teine. They include proteinase inhibitors, lectins, anhydrase inhibitors and defensins. 
Unlike simple chemicals like phenolics, alkaloids, terpenoids, etc. they need large 
amount of energy and resources of plant for their production. They are usually pro-
duced in significant concentration only after the attack by pest or pathogen. On 
activation these defensive protein and enzymes would effectively impede the growth 
of pathogens including fungi, bacteria as well as insect herbivores and nematodes.

13.7.1  Defensins

Small cysteine-rich protein displaying comprehensive antimicrobial activity was 
first isolated from endosperm of barley (Hordeum vulgare) and wheat (Triticum 
aestivum). They are best characterized in seeds but are also present in other plant 
tissues like leaves, pods, tubers, fruits, barks, etc. They display extensive array of 
biological activities and impede the spread of wide-ranging fungi and bacteria 
(Thomma et al. 2002). They also impede digestive protein in herbivores. The exact 
mechanism of their action is still under consideration; it looks like that they attack 
molecular targets in the pathogens’ plasma membrane. They disrupt cellular ion 
balance by forming new membrane pores as well as impede pre-existing ion 
channels.

13.7.2  Digestive Enzyme Inhibitors

Digestive enzyme inhibitors inhibit the digestion and disrupt the nutrient absorption 
by herbivores. Alpha-amylase inhibitor proteins bind to amylase enzyme impeding 
digestion of starch in legumes. Glycoproteins and non-enzymatic proteins like 

Table 13.2 Phytoalexin induction and resistance to plant pathogens

Plant Pathogen Phytoalexin
Grapevine {Vitis spp.) Plasmopara viticola Viniferins
Grapevine (Vitis spp.) Botrytis cinerea Viniferins
Carnation (Dianthus spp.) Fusarium oxysporum Dianthalexin

Methoxydianthramide S
Pea (Pisum sativum) Pseudomonas syringae Pisatin
Chickpea (Cicer arietinum) Ascochyta rabiei Medicarpin

Maakiain
Citrus spp. Phytophthora citrophthora Scoparone
Oat (Avena sativa) Puccinia coronata Avenalumins
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lectins bind to carbohydrates displaying various properties, for example, in inverte-
brates they cause lumping of blood cells and in insects they disrupt digestion 
(Peumans and Van-Damme 1995). Ricin combines lectin molecule with an 
N-glycoside hydrolase to produce a very powerful toxin in Ricinus. It impedes pro-
tein synthesis in animal cells.

13.7.3  Protease Inhibitors

Protease inhibitors impede digestive enzymes like chymotrypsin and trypsin. They 
are produced by plants as a defense mechanism to protect them from attack by her-
bivores. They have wide distribution but mainly seen in legumes, members of 
Solanaceae and grasses.

13.7.4  Hydrolytic Enzymes

When pathogens attack plants, some of the plants in order to defend themselves 
produce hydrolytic enzymes. These enzymes act upon pathogenic fungi by degrad-
ing their cell walls in the extracellular spaces where the enzymes get accumulated. 
For example, the degradation of chitin in cell wall of fungi is catalysed by chitin-
ases. The degradation of glycosidic linkages in glucans existing in several oomycete 
(water moulds) cell walls is catalysed by glucanases. Another example of a hydro-
lytic enzyme with the ability to degrade cell walls of bacteria is lysozymes.

In this review we have discussed the utility of secondary metabolites occurring 
in plant in their defense system. We have tried our best to portray the role of differ-
ent chemical compounds produced by plants itself against various plant pathogens. 
Several factors are involved in the interaction of a species of plants with its respec-
tive pest and non-pest and hence quite complex. Synthesis and accumulation of 
these compounds occur in tissues which are young and developing like leaves as 
well as in tissues of reproduction like seeds and flowers, thereby protecting young 
plant tissues. Some of the antimicrobial secondary metabolites are preformed, while 
others are induced by infection itself (phytoalexins, cyanogenic glycosides, gluco-
sinolates, etc.). Organic farming can be made sustainable by identifying and prop-
erly using the natural chemical compounds to combat the pathogens, thereby 
eliminating or at least minimizing the use of fungicides in agriculture. Further 
research is required for development of natural pesticides. The genes required for 
producing these valuable defensive compounds can be isolated and then synthesized 
in bulk for the crop plants to be reengineered metabolically. This will make the 
plants more resistant towards threats posed by microbial pathogens, various herbi-
vores and several environmental stresses.

A. R. Tiku



305

References

Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus 
lunatus L.) is an efficient direct defence in nature. Plant Signal Behav 4(8):735–745

Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New 
Phytol 127:612–633

Brooker N, Windorski J, Blumi E (2008) Halogenated coumarins derivatives as novel seed protec-
tants. Commun Agric Appl Biol Sci 73(2):81–89

Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564
Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Ann Rev Plant 

Physiol Plant Mol Biol 48:355–381
DeVos M, Jander G (2009) Myzus persicae (Green peach aphid) salivary components induce 

defence responses in Arabidopsis thaliana. Plant Cell Environ 32(11):1548–1560
Echeverri F, Torres F, Quinones W, Cardona G, Archbold R, Roldan J, Brito I, Luis JG, LahlouU 

EH (1997) Danielone a phytoalexin from papaya fruit. Phytochemistry 44(2):255256. INIST: 
2558881 (http://cat.inist.fr/?aModele=afficheN&cpsidt=2558881)

Eisner T, Meinwald J  (1995) Chemical ecology: the chemistry of biotic interaction. In: (eds). 
National Academy Press, Washington, DC

Fenwick GR, Price KR, Tsukamota C, Okubo K (1992) Saponins. In: DMello JP, Duffus CM, 
Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, 
pp 285–327

Freeman BC, Beattie GA (2008) An overview of plant defences against pathogens and herbivores. 
Plant Health Instr 0226-01.

Garas NA, Waiss AC (1986) Differential accumulation of antifungal sesquiterpenoids in cotton 
stems inoculated with Verticillium dahliae. Phytopathology 76:1011–1017

Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berenbaum MR (eds) Herbivores 
their interaction with secondary plant metabolites, Vol I: the chemical participants, 2nd edn. 
Academic, San Diego, pp 165–219

Geu-Flores F, Olsen CE, Halkier BA (2009) Towards engineering glucosinolates into non- 
cruciferous plants. Planta 229(2):261–270

Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants 1982–1993. 
Phytochemistry 37:19–42

Gross D, Porzel A, Schmidt J (1994) Phytoalexine mit Indolstruktur aus Kohlrabi [Phytoalexins 
with indole structure from Kohlrabi]. Z Naturforsch 49(5–6):281–285

Grosskinsky DK, Naseem M, Abdelmoshem UA, Plickert N, Engelke T, Griebel T, Zeier J, Novak 
O, Strand M, Pfeifhofer H et al (2011) Cytokinins mediate resistance against Pseudomonas 
syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of sali-
cylic acid signaling. Plant Physiol 157:815–830

Grubb C, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100
Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier 

P, Stöcker R et al (1993) Disease resistance results from foreign phytoalexin expression in a 
novel plant. Nature 361:153–156

Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 
57:303–333

Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defence responses. 
Plant Cell 8:1773–1791

Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem 
Syst Ecol 27:335–367

He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances 
biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. 
Plant Cell 12(9):1689–1702

Hegnauer R (1988) Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. 
Phytochemistry 27:2423–2427

13 Antimicrobial Compounds and Their Role in Plant Defense

http://cat.inist.fr/?aModele=afficheN&cpsidt=2558881


306

Ilic Dusica P, Nikolic Ljubisa B, Stanojevic Ljiljana P, Nikolic Vesna D, Stankovic Mihajlo Z, 
Milorad C (2011) Allicin and related compounds: biosynthesis, synthesis and pharmacological 
activity(PDF). Facta Universitatis 9(1):9–20. https://doi.org/10.2298/FUPCT1101009I

Jeandet P (2015) Phytoalexins: current progress and future prospects. Molecules 20:2770–2774
Jeandet P, Clément C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in 

engineered plants for disease resistance. Int J Mol Sci 14:14136–14170
Jeandet P, Clément C, Courot E (2014a) Resveratrol production at large scale using plant cell sus-

pensions. Eng Life Sci. https://doi.org/10.1002/elsc.201400022
Jeandet P, Hébrard C, Deville MA, Cordelier S, Dorey S, Aziz A, Crouzet J (2014b) Deciphering 

the role of phytoalexins in plant-microorganism interactions and human health. Molecules 
19:18033–18056

Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in trans-
genic tobacco plants: effects on natural defence against Manduca sexta larvae. Proc Natl Acad 
Sci U S A 86:9871–9875

Kang SY, Kim YC (2007) Decursinol and decursin protect primary cultured rat cortical cells from 
glutamate-induced neurotoxicity. J Pharm Pharmacol 59(6):863–870

Kurosaki F, Nishi A (1983) Isolation and antimicrobial activity of the phytoalexin 6methoxymel-
lein from cultured carrot cells. Phytochemistry 22(3):669. https://doi.org/10.1016/S00319422 
(00)869599

Lake JA, Field KJ, Davey MP, Beerling DJ, Lomax BH (2009) Metabolomic and physiological 
responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. 
Plant Cell Environ 32(10):1377–1389

Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–643
Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Ann Rev Plant 

Physiol Plant Mol Biol 41:455–496
Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V (2010) Live and let die-Arabidopsis non-host 

resistance to powdery mildews. Eur J Cell Biol 89(2):194–199
Mari M, Lori R, Leoni O, Marchi A (1993) ln vim activity of glucosinolate-derived isothiocyanates 

against postharvest fruit pathogens. Ann Appl Biol 123:155–164
Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defence mechanisms 

of plants. Biol Med 3(2):232–249
Mes JJ, Van Doorn AA, Wijbrandi J, Simons G, Cornelissen BJC, Haring MA (2000) Expression 

of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant 
J 23:183–193

Monde K, Osawa SM, Harada N, Takasugi M, Suchy M, Kutschy P, Dzurilla M, Balentova E (2000) 
Synthesis and absolute stereochemistry of a cruciferous phytoalexin, (−)-Spirobrassinin. Chem 
Lett 598:886–887

Mordue AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924
Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role 

of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 98:759–764
Osbourn AE (1996) Preformed antimicrobial compounds and plant defences against fungal attack. 

Plant Cell 8:1821–1831
Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various 

fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis 
NRP1. Transgenic Res 19:959–975

Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces 
wound inducible proteinase inhibitor proteins. Science 253:895–898

Pegg GF, Woodward S (1986) Synthesis and metabolism of a-tomatine in tomato isolines in rela-
tion to resistance to Verticillium albo-atrum. Physiol MOI Plant Pathol 28:187–201

Peumans WJ, Van Damme EJM (1995) Lectins as plant defence proteins. Plant Physiol 109:347–342
Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405
Price KR, Johnson IT, Fenwick GR (1987) The chemistry and biological significance of saponins 

in food and feeding stuffs. Crit Rev Food Sci Nutr 26:27–133

A. R. Tiku

https://doi.org/10.2298/FUPCT1101009I
https://doi.org/10.1002/elsc.201400022
https://doi.org/10.1016/S00319422 (00)869599
https://doi.org/10.1016/S00319422 (00)869599


307

Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive 
MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 
105:5638–5643

Rosenthal GA (1991) The biochemical basis for the deleterious effects of L-canavanine. 
Phytochemistry 30:1055–1058

Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 
136:2443–2450

Schafer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microor-
ganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4(12):1684–1703

Seigler DS (1991) Secondary metabolites and plant systematic. In: Conn EE (ed) The biochemistry 
of plants, Secondary plant products, vol 7. Plenum, New York/London, pp 139–176

Smith CA, MacHardy WE (1982) The significance of tomatine in the host response of susceptible 
and resistant tomato isolines infected with two races of Fusarium oxysporum f. sp. lycopersici. 
Phytopathology 72:415–419

Sreevidya VS, Srinivasa RC, Rao C, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineer-
ing of rice with soyabean isoflavone synthase for promoting nodulation gene expression in 
rhizobia. J Exp Bot 57(9):1957–1969

Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defenses. Planta 216(2):193–202
Turlings TCJ, Loughrin JH, Mccall PJ, Roese USR, Lewis WJ, Tumlinson JH (1995) How 

caterpillar- damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad 
Sci U S A 92:4169–4174

Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phy-
toalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

Wink M (1999) Functions of plant secondary metabolites and their exploitation in biotechnology, 
Annual plant reviews, vol 3. CRC Press, Boca Raton

Zernova OV, Lygin AV, Pawlowski ML, Hill CB, Hartman GL, Widholm JM, Lozovaya VV 
(2014) Regulation of plant immunity through modulation of phytoalexin synthesis. Molecules 
19:7480–7496

13 Antimicrobial Compounds and Their Role in Plant Defense



309© Springer Nature Singapore Pte Ltd. 2018
A. Singh, I. K. Singh (eds.), Molecular Aspects of Plant-Pathogen Interaction, 
https://doi.org/10.1007/978-981-10-7371-7_14

S. K. Singh (*) 
Kentucky Tobacco Research and Development Center, University of Kentucky,  
Lexington, KY, USA
e-mail: sanjaysingh@uky.edu

14Explorations of Plant’s Chemodiversity: 
Role of Nitrogen-Containing Secondary 
Metabolites in Plant Defense

Sanjay Kumar Singh

Abstract
In nature, plants are surrounded by a number of biotic and abiotic environmental 
stresses. Biotic ecosystems contain a wide variety of bacteria, viruses, fungi, 
nematodes, mites, insects, mammals, and other herbivorous animals, greatly 
responsible for heavy reduction in crop productivity. Henceforth, to cope up 
from these biotic stresses, the plant defense mechanism increasingly requires the 
availability of large numbers of phytochemicals. Chemodiversity in plants offers 
a valuable source; for example, nitrogen-containing secondary metabolites, pre-
viously regarded as waste products, are now recognized for their resistant activ-
ity against herbivores, pests, pathogens, and diseases. In this chapter, I have 
described the increasing role of nitrogen-containing secondary metabolites dur-
ing plant defense. These metabolites impose their effects by acting as deterrence/
antifeedant, toxicity, or precursors to physical defense systems. Many special-
ized herbivores and pathogens do not merely circumvent the deterrent or toxic 
effects of secondary metabolites but actually utilize these compounds as host 
recognition signals and/or nutrients. This is true for both cyanogenic glucosides 
and glucosinolates which are discussed in detail. Their biochemical and molecu-
lar mechanism of action is compared and contrasted.
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14.1  Introduction

The term chemodiversity, generally, leaves aside larger molecules, which involve in 
vital primary metabolic functions and form the majority of the organic body mass of 
living beings. Thus, small molecules that often have a defensive or offensive signal-
ing function mainly contribute to the chemodiversity. Since the beginning, humans 
have utilized the plants, one of the most prolific sources of biochemical diversity, for 
its own benefits. Since ancient times, plants have provided mankind with cures for 
health problems and continue to be the most capable pool of bioactive chemicals for 
the development of modern drugs (Dias et  al. 2012; Cragg and Newman 2013; 
Harvey et al. 2015). More than 20,000 natural molecules have been studied so far, 
and numerous have been used as novel anticancer, antibiotic, anti- inflammatory or 
anti-pain agents, etc. In the previous few decades, plants have turned into a critical 
source for the discovery of novel and unique pharmaceutical compounds (Cordell 
2000; Farnsworth 1988; Newman et al. 2000). Plants are reported to have high che-
modiversity including more than 21,000 alkaloids, 700 nonprotein amino acids 
(NPAAs), 200 cyanogenic glycosides (CGs) and glucosinolates, >20,000 terpenoids, 
>10,000 polyphenols, >1500 polyacetylenes and fatty acids, 750 polyketides, and 
200 carbohydrates (Wink 2008, 2013; Theis and Lerdau 2003).

Approximately 450 million (M) years ago, plants began to inhabit the terrestrial 
earth during the mid-Ordovician period and over the subsequent 40 M years spread 
across the earth surface. The evolution of species-specific metabolic systems from 
core metabolic pathways of aquatic ancestors was one of the reasons behind the 
success of early land plants, as they were able to synthesize the structurally and 
functionally diverse chemicals to cope with frequent biotic and abiotic ecological 
pressures (Weng et al. 2012). Several of these chemicals, such as cuticular compo-
nents and phenolic compounds, are universal in all land plants and, therefore, pro-
vide indispensable physical and chemical protection against desiccation and UV 
radiation (Fig. 14.1). Other classes of specialized metabolites, including those that 
contribute to plant-specific flavors, colors, and scents, frequently occur in a lineage- 
specific manner and play specialized roles for the host species in their natural habi-
tat (Weng et al. 2012). Present knowledge of secondary metabolism and its evolution 
in the plant has been primarily driven by studying of angiosperms or flowering 
plants, ranging from well-studied model species, such as rice and Arabidopsis 
(Romeo 2004; D’Auria and Gershenzon 2005), to the reference species including 
medicinal plants with remarkable pharmaceutical properties, e.g., Vinca minor, 
Catharanthus roseus, and Rauvolfia serpentina (Facchini and De Luca 2008; De 
Luca et al. 2012; Patra et al. 2013). These studies revealed massive chemical diver-
sity in flowering plants and provide deep insight on their widespread speciation and 
global domination over the last 170 M years following the Permian-Triassic extinc-
tion event (Wikström et al. 2001). The vast expansion of plant chemodiversity asso-
ciated with secondary metabolites reflects the tremendous adaptability of 
land-dwelling plants. For example, plant hormones regulate various aspects of plant 
growth and development in response to environmental cues, whereas phenolic and 
waxy cuticles act as UV protectant and prevent excessive water loss. Plant polymers 
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including lignin and sporopollenin provide mechanical support, gamete protection, 
and wound healing. New metabolic pathways continuously arose throughout ter-
restrial plant evolution, resulting in a contemporary collection of secondary metabo-
lites. Therefore, some of these specialized metabolites are common across various 
taxonomic groups, while others were found in some limited species.

14.2  Secondary Metabolites Are Divided into Three Major 
Groups

On the basis of their chemical nature, plant secondary metabolites can be divided 
into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing 
compounds.

14.2.1  Terpenes

Terpenes (also known as terpenoids) constitute the largest class of secondary metab-
olites. Plants and other natural sources are reported to produce more than 30,000 
terpenoids (Bohlmann et al. 1998).

In plants, terpenes are biosynthesized in at least two different pathways. The main 
and well-studied biosynthetic route is known as the mevalonic acid (MA) pathway.

Fig. 14.1 Functional diversity of plant secondary metabolites
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In the MA pathway, three molecules of acetyl-CoA are joined together in a step-
wise manner to form MA. This key six-carbon intermediate then undergoes differ-
ent chemical modifications like pyrophosphorylation and decarboxylation to 
produce isopentenyl diphosphate (IPP). Finally, IPP acts as a building block of ter-
penes. The second route of terpene biosynthesis is known as methylerythritol- 4- 
phosphate (MEP) pathway, which operates in plastids (Tholl and Lee 2011; 
Lichtenthaler 1999). Glyceraldehyde-3-phosphate and two carbon atoms derived 
from pyruvate condense to form the five-carbon intermediate, 1-deoxy-d-xylulose 
5-phosphate. The 1-deoxy-d-xylulose 5-phosphate further rearranged and reduced 
to MEP, which eventually converted into IPP.

Terpenes are the structurally diverse class of secondary metabolites from hemi- 
to polyterpenes (Table 14.1). All terpenes are originated from the union of five- 
carbon elements (also referred to as C5 units) that have the branched carbon skeleton 
of isopentane. The basic structural elements of terpenes are also known as isoprene, 
and, thus, terpenes are sometimes also called as isoprenoids. The terpenes can be 
classified in different groups on the basis of a number of C5 units they comprised of 
(Table  14.1). For instance, 10-carbon terpenes, which contain two C5 units, are 
called monoterpenes, while 15-carbon terpenes (three C5 units) are sesquiterpenes. 
In spite of structural similarities, terpenes can be synthesized in different compart-
ments in the cell. For instance, nowadays it is believed that sesquiterpenes and trit-
erpenes are synthesized through the cytosolic MA pathway, whereas mono-, di-, 
and tetraterpenes are derived from the chloroplastic MEP pathway (Thimmappa 
et al. 2014).

Terpenes have roles in both primary and secondary metabolism. Certain terpenes 
have been well studied for their functions in plant growth or development and there-
fore can be considered as primary rather than secondary metabolites. For instance, 
the gibberellins, an important group of phytohormones which are essential for 
numerous growth and developmental processes in plants including seed germina-
tion, leaf expansion, stem elongation, pollen maturation, trichome development, 
and the induction of flowering (Achard and Genschik 2009), are diterpenes. 
Brassinosteroids, also a class of plant hormones with growth-regulating functions 
such as activation of the cell cycle during seed germination (Zadvornova et  al. 
2005), control of cell cycle progression (González-García et al. 2011), and induc-
tion of exaggerated growth of hydroponically grown plants (Arteca and Arteca 

Table 14.1 Important molecules of terpenoids

Number of carbon Name Example
C5 Hemiterpene Isoprene, prenol, isovaleric acid
C10 Monoterpene Limonene, eucalyptol, pinene
C15 Sesquiterpene ABA (abscisic acid)
C20 Diterpene Gibberellin
C25 Sesterterpenes Ophiobolin A, ceroplastol
C30 Triterpene Brassinosteroids, squalene, lanosterol
C40 Tetraterpene Carotenoids, lycopene
C>40 Polyterpenes Ubiquinones, rubber, cytokonines, vitamin E
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2001), are derived from triterpenes. Terpenes are toxins and also act as a feeding 
deterrent to many herbivorous insects and mammals (Gershenzon and Croteau 
1992). For instance, pyrethroids, a monoterpene ester reported from Chrysanthemum 
species, show remarkable insecticidal activity (Mori 2012). Monoterpenes accumu-
late in resin ducts found in the needles, twigs, and trunk of conifers, such as Douglas- 
fir, lodgepole pine, Pinus contorta, Picea engelmannii×glauca, and Abies 
lasiocarpa×bifolia, and are toxic to numerous insects, including bark beetles, a 
serious pest of conifer species throughout the planet (Trapp and Croteau 2001).

Essential oils, which lend a characteristic odor to their foliage, are mixtures of 
volatile monoterpenes and sesquiterpenes. Essential oils have been broadly used for 
bactericidal, virucidal, fungicidal, insecticidal, medicinal, and cosmetic applications 
(Isman 2000). Recently they are also used in pharmaceutical, sanitary, cosmetic, 
agricultural, and food industries (Holley and Patel 2005). Mentha piperita, Citrus 
limon, Ocimum basilicum, and Salvia officinalis are some well-known plants that 
contain essential oils. Essential oils are frequently found in glandular hairs and serve 
to repel the potential herbivores even before they take a trial bite. Caryophyllene, a 
sesquiterpene, is a common constituent of the essential oil of numerous plants includ-
ing Piper nigrum and Syzygium aromaticum. Caryophyllene is known to possess 
anti-inflammatory, antimicrobial, anticarcinogenic, antibiotic, antioxidant, and local 
anesthetic properties (Legault et al. 2013; Kuwahata et al. 2012; Lee et al. 2005).

14.2.2  Phenolic Compounds

Plants produce a large variety of secondary metabolites that contain a phenol group: 
one or more hydroxyl functional groups on benzene rings (Randhir et  al. 2004). 
These substances are classified as phenolic compounds or phenolics. The structures 
of these phenolics may range from simple phenolic molecule to complex high- 
molecular- weight polymer (Velderrain-Rodriguez et al. 2014). Phenolic compounds 
are found in nearly all the plant kingdom and located in nearly all plant parts. Main 
classes of phenolic compounds reported in higher plants are given in Table 14.2.

Shikimic acid and malonic acid are two basic pathways involve in the biosynthe-
sis of phenolic compounds in plants. The shikimic acid pathway is involved in bio-
synthesis of most plant phenolics. Shikimic acid pathway converts simple 
carbohydrate precursors derived from glycolysis and the pentose phosphate path-
way (PPP) into the three aromatic amino acids: phenylalanine, tyrosine, and trypto-
phan. Phenylalanine acts as a precursor of biosynthesis of most abundant classes of 
secondary phenolic compound in the plant.

Phenolic compounds play a vital role in growth and reproduction of plants, pro-
viding protection against pathogens and herbivores (Bravo 1998). Phenolic com-
pounds are also involve in providing the color and sensory characteristics of fruits 
and vegetables (Alasalvar et al. 2001), in absorbing harmful ultraviolet (UV) radia-
tion, and in reducing the growth of nearby competing plants. Phenolic compounds 
also have a wide range of physiological properties, such as antiallergenic, antiath-
erogenic, anti-inflammatory, antimicrobial, cardioprotective, and vasodilatory 
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effects (Benavente-Garcia et al. 2000; Manach et al. 2005; Middleton et al. 2000; 
Puupponen-Pimiä et al. 2001; Samman et al. 2001).

Lignin is formed from three different phenylpropanoid alcohols, namely, 
coniferyl, coumaryl, and sinapyl. The physical toughness of lignin acts as a herbi-
vore deterrent, while its chemical durability makes it relatively indigestible to her-
bivore and insect pathogens (Lattanzio et al. 2006; Rosenthal and Berenbaum 2012). 
The flavonoids, one of the largest classes of plant phenolics, are involved in pigmen-
tation and defense (Treutter 2005). Tannins, a mainly constituent of woody plants, 
are general toxins that significantly reduce the growth and survivorship of many 
herbivores and also act as feeding repellents (Barbehenn and Peter Constabel 2011). 
Protocatechuic acid prevents smudge in onions, a disease caused by the fungus 
Colletotrichum circinans, and prevents spore germination and growth of other fungi 
as well (Kakkar and Bais 2014).

Table 14.2 Main classes of phenolic compounds in higher plants

Classes and subclasses Examples of specific compounds Natural sources
Non-flavonoid compounds
Phenolic acids Hydroxybenzoic acids; 

hydroxycinnamic acids
Macrotyloma uniflorum

Benzoic acids Gallic acid; protocatechuic acid Quercus infectoria, Hibiscus 
sabdariffa, Vitex agnus-castus4-hydroxybenzoic acid

Hydroxycinnamic acid Coumaric acid; caffeic acid; 
ferulic acid; sinapic acid

Arachis hypogaea, Eucalyptus 
globulus, Citrus limon

Hydrolyzable tannins Pentagalloylglucose Rhus chinensis
Stilbenes Resveratrol Fallopia japonica
Lignans Secoisolariciresinol; 

matairesinol; lariciresinol; 
pinoresinol

Linum usitatissimum, Sesamum 
indicum

Flavonoid compounds
Condensed tannins or 
proanthocyanidins

Procyanidin, prodelphinidins Vitis vinifera

Anthocyanidins Pelargonidin; cyanidin; malvidin Geranium dissectum, 
Philodendron bipinnatifidum

Flavanols Catechins; gallocatechins Uncaria rhynchophylla, 
Camellia sinensis

Flavanones Naringenin; hesperetin Citrus × paradisi, Mentha 
aquatica

Flavones Apigenin; luteolin Petroselinum crispum, Apium 
graveolens, Ambrosia 
psilostachya

Flavonols Kaempferol; quercetin; myricetin Aloe vera, Coccinia grandis
Isoflavones Daidzein; genistein; glycitein Pueraria mirifica
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14.2.3  Nitrogen-Containing Compounds

A large number of plant secondary metabolites have nitrogen as part of their struc-
ture. They are synthesized from common amino acids. Nitrogen-containing second-
ary metabolites can be categorized into four categories: alkaloids, cyanogenic 
glycosides, glucosinolates, and nonprotein amino acids.

14.2.3.1  Alkaloids
Alkaloids are typically defined as plant-derived pharmacologically active basic 
compounds, which synthesized from amino acids and may contain one or more 
heterocyclic nitrogen atoms. The alkaloids are an extremely heterogeneous group of 
more than 15,000 nitrogen-containing secondary metabolites. The alkaloids include 
more than 150 families and found in around 20% of the vascular plant species. 
Alkaloids in plants are common in families of seed-bearing vascular plants or 
angiosperms, e.g., Magnoliaceae, Solanaceae, Papaveraceae, Leguminosae, 
Ranunculaceae, Rubiaceae, and Apocynaceae. The alkaloidal plant species may 
contain single or multiple alkaloids. For example, Catharanthus roseus contains 
130 terpenoid indole alkaloids, including anticancerous vinblastine, and their syn-
thesis can be regulated by multiple pathways (van Der Heijden et al. 2004; Patra 
et al. 2013). The alkaloids can accumulate in a different part of the plants including 
leaf, epidermal and hypodermal cells, bundle sheaths, and latex vessels. Alkaloids 
are usually synthesized from one of a few common amino acids, such as lysine, 
tyrosine, or tryptophan. However, the basic carbon skeleton of some alkaloids may 
contain a component derived from the terpene pathway also. Table 14.3 lists the 
major alkaloid types, their amino acid precursors, and natural plant sources. 
Alkaloids usually occur as salts of organic acids, such as acetic, malic, lactic, citric, 
and oxalic, in plants, while some basic alkaloids, like nicotine, also occur freely in 
nature (Ramawat et al. 2009). Very often, the alkaloids are biosynthesized in a par-
ticular plant organ but accumulate in another. For example, in tobacco, nicotine is 
synthesized in roots but is translocated to and stored in leaves (Shoji et al. 2000; 
Yazaki 2005; Morita et  al. 2009). The alkaloids may be divided into three sub-
classes: proto-alkaloids, true alkaloids, and atypical alkaloids. Proto-alkaloids and 
true alkaloids are directly derived from amino acids, while atypical alkaloids are 
derived from sources other than amino acids, e.g., terpenoid-containing alkaloids.

14.2.3.1.1 Proto-alkaloids
These are nitrogen-containing alkaloids which originated from amino acids. Proto- 
alkaloids include mescaline, adrenaline, and ephedrine.

14.2.3.1.2 True Alkaloids
These alkaloids, generally, contain a heterocyclic ring with nitrogen, derived from 
amino acids and always basic in nature. These alkaloids are toxic and normally 
present in plants as salts of organic acids, e.g., nicotine, morphine, and codeine.
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14.2.3.1.3 Atypical Alkaloids
These are alkaloid-like compounds that do not derive from amino acids. The atypi-
cal alkaloids include terpene-like alkaloids, steroid-like alkaloids, and purine-like 
alkaloids such as caffeine, theobromine, ephedrine, colchicine, erythromycin, and 
taxol. These are less commonly found in nature.

14.2.3.2  Cyanogenic Glycosides (CGs)
CGs are a group of nitrile-containing plant secondary metabolites that produce cya-
nide following their enzymatic breakdown. There are approximately 25 known CGs 
which occur in at least 2600 plant species, such as members of Fabaceae, Rosaceae, 
Leguminosae, Linaceae, and Compositae family, of which a number of species are 
used as food including apples, apricots, cherries, peaches, plums, quinces, cassava, 
peas, beans, barley, and sorghum (Eisler 1991; Haque and Bradbury 2002; Ganjewala 
et  al. 2010; Vetter 2000). Chemically, CGs are glycosides of α-hydroxynitriles 
which are stored in cell vacuoles (Vetter 2000; Fleming 1999). The CG content in 
plant discourages feeding by insects and other herbivores. Most of the CGs are 
believed to be derived from L-valine, L-isoleucine, L-leucine, L-phenylalanine, 
L-tyrosine, and cyclopentenyl-glycine, a nonprotein amino acid. In plants, CG bio-
synthesis occurs in three steps (Vetter 2000). In the first step, two successive 
N-hydroxylations of amino group of parent amino acid are catalyzed by an enzyme 
of cytochrome P450 family which, finally, converted into aldoxime. The second 
step includes conversion of aldoxime into cyanohydrin by another cytochrome P450 
enzyme. In the final step, cyanohydrins get glycosylated by a soluble enzyme 

Table 14.3 Example of some true alkaloids and their natural sources

Alkaloid class Example Natural occurrence
Biosynthetic 
precursor

Pyrrolidine Stachydrine, hygrine Erythroxylum coca, Aspartate
Leonurus japonicus

Piperidine Coniine, piperine, solenopsin Piper nigrum Lysine
Psilocaulon absimile
Petrosimonia 
monandra
Conium maculatum

Tropane Atropine, racemic, 
hyoscyamine

Atropa belladonna Aspartate
Hyoscyamus niger
Mandragora 
officinarum

Isoquinoline Papaverine, narcotine, 
berberine

Papaver somniferum Tyrosine
Argemone mexicana

Quinolizidine Lupinine Lupinus albus Lysine
Indole Reserpine, ergatomine Ipomoea violacea Tryptophan

Turbina corymbosa
Pyrrolizidine Heliotridine Adenostyles alliariae Aspartate

Cordia myxa
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UDP-glucosyltransferase. CGs play pivotal roles in organization of chemical 
defense system in plants and in plant-insect interactions (Zagrobelny et al. 2004).

14.2.3.3  Glucosinolates
Glucosinolates (also known as mustard oil glycosides) are the second class of gly-
coside after CGs. Glucosinolates are sulfur- and nitrogen-containing plant second-
ary metabolites common in the agriculturally important Brassicaceae family. 
Glucosinolates degrade to produce the compounds responsible for the smell and 
taste of vegetables such as cabbage, broccoli, and radishes, which act as toxin and 
herbivore repellents. More than 130 glucosinolates have been identified in plants 
(Radojčić Redovniković et  al. 2008). The glucosinolate biosynthesis comprises 
three steps: amino acid chain elongation, conversion of the amino acid moiety to the 
glucosinolate core structure, and subsequent side chain modifications. The struc-
tural diversity of glucosinolates arises from side chain elongation of the amino acid 
precursors and from various secondary modifications including oxidation, desatura-
tion, hydroxylation, methoxylation, sulfation, and glucosylation. Most glucosino-
lates in the member of the Brassicaceae are synthesized from methionine that is 
modified by the sequential addition of one to nine additional methylene groups to its 
side chain (Graser et  al. 2000). Glucosinolates are stored in the intact plant dis-
cretely from the enzymes (myrosinase) that hydrolyze them, and they are brought 
into contact with the hydrolyzing enzymes only when the plant is crushed because 
of wounding and insect or pathogen attack. Loss of cellular integrity triggers the 
binary glucosinolate-myrosinase system and causes the generation of thioglucose, 
sulfate, and an unstable intermediate which spontaneously rearranges into several 
degradation products which can include nitriles, epithionitriles, isothiocyanates, 
oxazolidine-2-thiones, and thiocyanates (Radojčić Redovniković et al. 2008).

14.2.3.4  Nonprotein Amino Acids (NPAAs)
There are common 20 amino acids, also referred to as protein amino acids, which 
are incorporated into proteins by plants and animals. Nonetheless, several plants 
also contain unusual amino acids, called NPAA, that are not incorporated into pro-
teins. Instead, these NPAAs are present in the free form and act as defensive mole-
cules. Many NPAAs are very similar in structure to protein amino acids and, 
therefore, have similar properties. NPAAs can mimic the behavior of standard 
amino acids and, thus, can act as metabolic antagonists or inhibitors. For instance, 
canavanine and azetidine-2-carboxylic acid have structure much like that of argi-
nine and proline, respectively. About 900 NPAAs have been isolated from plants. Of 
these, some 250 are found, particularly, within a small subset of plant families 
including the Hippocastanaceae, Leguminosae, Sapindaceae, Aceraceae, and 
Cucurbitaceae (Wink 2011).
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14.2.4  Role of Nitrogen-Containing Secondary Metabolites 
in Plant Defense

Plants have a range of defense mechanisms, which occur soon after the pathogen 
attack that leads to the formation of a wide range of phytochemicals and by- products 
including nitrogen-containing secondary metabolites. These chemicals help the 
plant to respond to the incompatible interaction and finally help them to cope up 
with adverse conditions (Dixon 2001).

14.2.4.1  Alkaloids
Alkaloids are a diverse group of secondary metabolites with a variety of targets and 
biological activities including interference with neurotransmitters, disruption of 
DNA replication, and inhibition of protein synthesis (Mithöfer and Boland 2012). 
Alkaloids are produced by a large number of higher plant species and mostly 
involved in defense-related functions such as inhibition of competitors and herbi-
vore deterrents (Roberts 2013). The inhibitory effects of alkaloids on glycosidase 
and trehalose metabolism deter herbivores, and the capability to quench singlet 
reactive oxygen confers protection against this toxic photosynthetic by-product 
(Mithöfer and Boland 2012; González-Lamothe et al. 2009). Alkaloids also act as 
phytoanticipins and phytoalexins and, naturally protect the plants from disease 
(González-Lamothe et al. 2009). The α-tomatine, for example, is a spirosolane-type 
alkaloid that occurs in tomato plants and possesses antimicrobial, antifungal, and 
anti-inflammatory activities (Friedman 2002; Chiu and Lin 2008; Ito et al. 2007; 
Morrow et al. 2004; Simons et al. 2006; Thorne et al. 1985). Several potently anti-
bacterial alkaloids have been identified in the different classes of alkaloid including 
indole, indolizidine, isoquinoline, aaptamine, piperazine, quinoline, quinolone, 
aaptamine-indole, bisindole, and indole-quinoline in plants like Zanthoxylum tetra-
spermum, Prosopis glandulosa, Clausena heptaphylla, and Teclea afzelii (Maneerat 
et al. 2012; Chakraborty et al. 1995a, b; Samoylenko et al. 2009; Nissanka et al. 
2001; Iwasa et al. 2001; Kuete et al. 2008; Wang et al. 2013).

Alkaloids have toxic and repellent effects on a wide range of generalist herbi-
vores in order to reduce or prevent damage to plants (van Dam et al. 1995; Hartmann 
1999; Hartmann and Ober 2000; Ober 2003). Sugar-mimic alkaloids act as inhibi-
tors of several sugars and glycosidase-metabolizing enzymes leading to toxic effects 
on the insect. Morus species are a good example of plants that contain sugar-mimic 
alkaloids. Leaves exude of Morus species rich in sugar-mimic alkaloids, 1,4- dideox
y- 1,4-imino-d-arabinitol and 1-deoxynojirimycin, which are toxic to the Samia 
ricini (also known as eri silkworm), a generalist herbivore, but not to the domesti-
cated silkworm, Bombyx mori, a mulberry specialist (Hirayama et al. 2007). Yasuda 
et al. (2002) reported 13 sugar-mimic alkaloids from the pods of Angylocalyx pyn-
aertii, a member of Leguminosae (Yasuda et al. 2002). The nature of toxicity and 
target of plant alkaloid can be diversified but frequently involves in cell signaling 
disruption (Mithöfer and Boland 2012). Sanguinarine ((13-methyl[1,3]
benzodioxolo[5,6-c]-1,3-dioxolo[4,5]phenanthridinium), a benzophenanthridine 
alkaloid, mainly found in the Papaveraceae family, which includes Sanguinaria 

S. K. Singh



319

canadensis, Argemone mexicana, and Chelidonium majus, is shown to have antioxi-
dant, antitumor, antibacterial, and anti-inflammatory properties (Chaturvedi et al. 
1997). Sanguinarine is also reported to suppress cyclooxygenase, lipoxygenase, 
cholinesterase, Na+/K+-ATPase, cAMP- and Ca2+-dependent protein kinase, NF-κB 
activation, nitric oxide synthase, and mitogen-activated protein kinase phosphatase-
 1 activities (Jeng et al. 2007; Vavrečková et al. 1996; Ulrichová et al. 1983; Seifen 
et al. 1979; Wang et al. 1997; Chaturvedi et al. 1997; Huh et al. 2006; Vogt et al. 
2005). Sanguinarine inhibits choline acetyltransferase, an enzyme that catalyzes the 
biosynthesis of the neurotransmitter acetylcholine, and, finally affect neurotrans-
mission. Nicotine, mostly found in leaves of Nicotiana species, binds to nicotinic 
acetylcholine receptors and blocks or displaces the endogenous neurotransmitters. 
Nicotine acts as either an agonist or antagonist targeting nicotinic acetylcholine 
receptors in insects, causing continual stimulation of the parasympathetic nervous 
system which finally leads to paralysis and death of insect (Dewey and Xie 2013).

Toxic effects of plant alkaloids on bacterial and fungal activities have been 
shown in a number of studies. Quinolizidine alkaloids (QAs) which frequently 
occur in members of Fabaceae family, like Lupinus, Baptisia, Thermopsis, Genista, 
Cytisus, Echinosophora, and Sophora, are involved in plant protection against 
insect pests (Philippi et al. 2015; Wang et al. 2000; Zhao et al. 1998). QAs extracted 
from Lupinus angustifolius and Genista vuralii have shown to have antibacterial 
properties (Erdemoglu et al. 2007, 2009). The antifungal properties of alkaloids also 
have been proved for several plant-associated fungi by bioassay experiments 
(Wippich and Wink 1985; Ma et al. 1999; Zhao et al. 1998; Zhou et al. 2003). The 
antifungal alkaloids are reported from different plants, such as Corydalis incisa, 
Corydalis ambigua, Dictamnus dasycarpus, and Veratrum taliense, which are 
reported to be effective against a wide range of phytopathogenic fungi including 
Cladosporium cucumerinum, Erysiphe graminis, Cladosporium herbarum, 
Phytophthora capsici, and Rhizoctonia cerealis.

14.2.4.1.1 Cyanogenic Glycosides
CGs can act as a defense molecule both against herbivory and phytopathogens. In 
general, an inverse correlation is frequently reported between the degree of herbi-
vore pressure and the CG content in plant (Schappert and Shore 1999; Gleadow and 
Woodrow 2000; Ballhorn 2011). Dhurrin (4-hydroxymandelonitrile-β-d-glucoside) 
is a well-studied CG, reported to be present in several plant species including 
Sorghum bicolor. Dhurrin acts as an oviposition activator for the pests such as 
Atherigona soccata and Chilo partellus (Alborn et al. 1992). Efficient hydrolysis of 
dhurrin and, subsequent, release of cyanide are essential to deter insect herbivory in 
Sorghum bicolor (Krothapalli et al. 2013). Larvae of Phyllotreta nemorum eat 80% 
less tissue of the dhurrin-overproducing transgenic Arabidopsis plant compared to 
wild-type (Tattersall et al. 2001). The CG content, the rate of HCN release, and the 
susceptibility of the attacker to HCN are three main factors which determine the 
effectiveness of CGs against attackers (Ballhorn et al. 2005; Kadow et al. 2012). 
Many organisms, including humans, have mechanisms to detoxify and excrete 
HCN; therefore, HCN poisoning occurs only when the rate of detoxification is 
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lesser than the rate of intake. Depending on the insect species, CGs can act both as 
feeding deterrents or phagostimulants. For instance, CG acts as a feeding stimulant 
for Spodoptera eridania larvae as it prefers to graze on CG-containing plants, such 
as Phaseolus lunatus, and grows better when cyanide is present in their diet 
(Brattsten et al. 1983). In contrast, Prunus dulcis plants with a high concentration of 
CGs are resistant to larvae of Capnodis tenebrionis (Malagon and Garrido 1990). 
Ellsbury et al. (1992) studied the variation in feeding damage to Trifolium repens 
(white clover) by larvae of Hypera postica (alfalfa weevils) (Ellsbury et al. 1992). 
They found that larvae of Hypera postica preferred leaflets of Trifolium repens with 
less or no CG content. Although all CGs have a potential danger through the pro-
duction of HCN, there are differences in the sensitivity of different animal species. 
CG content of Prunus padus, also known as bird cherry, triggers the anorexia, 
weakness, depression, stupor, circling, bruxism, excessive salivation, and tenesmus 
in herbivores which, finally, leads to death (Sargison et  al. 1996). CGs are also 
reported to have the antifungal properties. For instance, CGs can inhibit the growth 
of some fungi, such as Magnaporthe oryzae (also known as blast fungus), in dose- 
dependent manner (Seo et al. 2011).

CGs can be harmful to human also. Different types of CGs may be found in vari-
ous cyanogenic food plants, for example, taxiphyllin in bamboo shoots and linama-
rin and lotaustralin in cassava (Organization 2013). The tubers of cassava which is 
used as staple food in many tropical countries, such as the Pacific Island countries, 
Latin America, Africa, and regions of Asia, contain high levels of CGs. Although 
traditional tuber processing methods, such as grating, grinding, soaking, and drying, 
caused the removal or degradation of a major fraction of the CGs present in cassava 
tubers. However, partial paralysis of the limbs caused by chronic cyanide poisoning 
is still widespread in cassava-eating regions. Tropical ataxic neuropathy and konzo 
are some health-related issues that can be caused by continuous dietary exposure to 
CGs (Tylleskär et al. 1992; Ernesto et al. 2002; Oluwole et al. 2000).

14.2.4.1.2 Glucosinolates
Most of the glucosinolates in plants are involved in responses to external or environ-
mental stimuli. Glucosinolates are also involved in communicating and activating a 
variety of information relating to plant defense against insects, bacteria, and fungi. 
Depending on developmental stage and environmental condition, glucosinolate pat-
tern varies between species and ecotypes as well as between and within individual 
plants. Environmental conditions such as temperature and light (Hasegawa et al. 2000; 
Engelen-Eigles et al. 2006), changes in nutritional status (Kaur et al. 1990; Underhill 
et al. 1980), biotic (e.g., fungal infection and insect damage), and abiotic (e.g., wound-
ing) (Halkier and Gershenzon 2006; del Carmen et al. 2013) stress can alter the glu-
cosinolate profile significantly. A change of the glucosinolate profile by several 
environmental factors has supported the idea regarding possible roles of glucosino-
lates in the plant defense against insects, herbivores, and microbial pathogens.

Glucosinolates and their hydrolysis products evidently act as mediators in plant- 
insect interactions. Glucosinolates can function as general poison and deterrent for 
generalist insects. Glucosinolates in Brassica show growth inhibition or feeding 
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deterrence to a wide range of general herbivores such as birds, land slugs, and gen-
eralist insects (Giamoustaris and Mithen 1995, 1996). Martin and Müller (2007) 
found that Sinapis alba (white mustard) respond to Athalia rosae (turnip sawfly) 
damage by systematically accumulating higher levels of glucosinolates and, thus, 
apparently increasing their resistance (Martin and Müller 2007). An increase in 
short-chain aliphatic methylsulfinyl glucosinolates in Arabidopsis thaliana in 
response to both specialist and generalist phloem-feeding aphids is also known 
(Mewis et al. 2005). Brassica napus lines with higher glucosinolate content are also 
reported to have less damage in response to generalists such as pigeons and slugs 
(Giamoustaris and Mithen 1995). Brassica juncea with high glucosinolate concen-
trations is less prone to damage caused by both crucifer specialist, Plutella xylo-
stella, and the generalist, Spodoptera eridania (Li et  al. 2000). Moreover, insect 
herbivore feeding may substantially increase the levels of glucosinolates in plants. 
In Arabidopsis, comparison of glucosinolate accumulation and expression of gluco-
sinolate biosynthetic genes in wild-type and mutant lines affected in defense signal-
ing indicated that feeding of the aphid generalist Myzus persicae (Sulzer), the aphid 
specialist Brevicoryne brassicae (L.), and the Spodoptera exigua Hübner, a lepi-
dopteran generalist, can increase the accumulation of aliphatic glucosinolate con-
tent (Mewis et al. 2006). The plant also alters the nature of glucosinolates in affected 
area to deter the herbivores. For instance, Myzus persicae feeds on Arabidopsis and 
causes an overall decrease in glucosinolate content, but the production of 4- methox
yindol- 3-ylmethylglucosinolate is induced. This altered composition of glucosino-
late, finally, acts as a deterrent for herbivores (Kim and Jander 2007).

The role of glucosinolates in defense against pathogens is not well studied like 
for herbivores. However, there are several reports indicating glucosinolate and its 
hydrolysis products can be toxic to bacteria and fungi (Smolinska et al. 2003; Mari 
et al. 2002; Li et al. 1999). Brassica crops are used as a break crop. The glucosino-
lates and their hydrolysis products secreted from Brassica canola and Indian mus-
tard show inhibitory effects on soilborne fungal pathogen, Gaeumannomyces 
graminis var. tritici, which causes take-all of wheat (Angus et  al. 1994). The 
4- methylsulphinylbutyl isothiocyanate, a glucosinolate-derived isothiocyanates, is 
reported to have broad spectrum of antimicrobial activity. Growth of wide range of 
the fungi, such as Alternaria brassicicola, Plectosphaerella cucumerina, Botrytis 
cinerea, Fusarium oxysporum, and Peronospora parasitica, and bacteria, like 
Erwinia carotovora and Pseudomonas syringae, is inhibited by the presence of 
4-methylsulphinylbutyl isothiocyanate (Tierens et  al. 2001). Also, tryptophan- 
derived indole glucosinolates are reported to enhance the resistance of Arabidopsis 
thaliana against fungi like Plectosphaerella cucumerina and Phytophthora brassi-
cae (Sanchez-Vallet et al. 2010; Schlaeppi et al. 2010).

Additionally, exogenous treatment of phytohormones like jasmonic acid (JA) 
and salicylic acid (SA), key signal regulators of plant defenses, to the plant also 
alters the glucosinolate profile which, again, proves the role of glucosinolates in 
plant defense. Previous studies showed that exogenous JA application can induce 
the accumulation of indole glucosinolate content in white mustard and oilseed rape 
(Bodnaryk 1994; Doughty et al. 1995). In addition, SA application is also reported 
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to alter glucosinolate accumulation in oilseed rape (Kiddle et al. 1994). The hydro-
lysis products of glucosinolate have negative effects on vertebrates too. A diet 
highly rich in glucosinolates can cause the growth depression, poor palatability, 
decreased food efficiency, hypertrophy and hyperplasia of the thyroid, and liver 
lesions and necrosis in vertebrates (Anilakumar et al. 2006).

14.2.4.1.3 Nonprotein Amino Acids
NPAAs are commonly found in plants. NPAAs are present in widely consumed 
animal foods also. For instance, Medicago sativa is rich in canavanine, while Lens 
culinaris, a widely used edible pulse, contains homoarginine. In plants, NPAAs pos-
sess different roles including antiherbivory, antimicrobial, and allelochemical activ-
ity. The NPAA can protect the producer plants against stress, microorganisms, 
plants, insects, or higher animals including human (Bell 2003; McSweeney et al. 
2008). NPAAs exert their toxicity in several ways. Some block the synthesis or 
uptake of protein amino acids, while others can be misincorporated into proteins 
and, finally, lead to production of nonfunctional proteins.

The protein-synthesizing machinery of plants that produce NPAAs can discrimi-
nate between protein and NPAAs, and, therefore, they are not susceptible to the 
toxicity of NPAAs. For instance, Convallaria majalis produces an analog of the 
protein amino acid L-proline known as L-azetidine-2-carboxylic acid. Although 
Convallaria majalis can differentiate the L-proline and L-azetidine-2-carboxylic 
acid, it can be easily misincorporated in proteins of Vigna aureus, which does not 
synthesize azetidine-2-carboxylic acid, and strongly inhibit the growth of germinat-
ing seedlings (Fowden 1963).

14.2.4.1.4 Aliphatic NPAAs
β-methylamino-L-alanine (BMAA) is a derivative of the alanine with a methyl-
amino group on the side chain. BMAA is produced by the cyanobacteria in root 
nodules of cycads and has potent neurotoxic properties. BMAA is also accumulated 
in the seeds of cycads and causes amyotrophic lateral sclerosis/parkinsonism- 
dementia (ALS/P-D) (Steele and Guzman 1987; Ince and Codd 2005). ALS is a rare 
group of progressive neurological disorders that mainly involve the neurons respon-
sible for controlling voluntary muscle movements such as chewing, walking, and 
breathing. Dencichine (β-N-oxalyl-l-α,β-diaminopropionic acid) is a hemostatic 
agent present in widely used traditional Chinese medicinal herbs, such as Panax 
species and Lathyrus sativus. Dencichine is a neuro-excitatory NPAA which causes 
the motor neuron disease, neurolathyrism, a condition with acute neurotoxic symp-
toms such as the inability to stand, neck stiffening, and head retraction (Campbell 
et  al. 1993). Canavanine, an arginine analog, is synthesized in some leguminous 
plants (Bell et al. 1978) and plays a pivotal role in plant chemical defense against 
insects (Rosenthal 2001). Canavanine functions as an allelopathic chemical and 
inhibits plant growth (Nakajima et al. 2001). Incorporation of canavanine in place 
of arginine produces structurally aberrant proteins which exhibit altered protein 
conformation and impaired function in insects, such as Manduca sexta and Heliothis 
virescens (Rosenthal and Dahlman 1986; Berge et al. 1986). Animals fed on seeds 
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of canavanine-containing plants developed hematological and serological abnor-
malities and induce antibody-mediated autoimmune phenomena (Bell 2003). 
Indospicine is a hepatotoxic NPAA found in Indigofera plant species. It accumu-
lates as the free amino acid in the tissues (like muscle) of grazing animals including 
the horse and acts as a competitive inhibitor of arginase and causes reproductive 
losses and severe to mild liver disease (Fletcher et al. 2015). Djenkolic acid com-
monly found in Archidendron pauciflorum causes djenkolism, an acute kidney mal-
function (Bunawan et  al. 2014; Bell 2003). L-methionine sulfoximine, 
seleno-cystathionine, selenomethionine, and dl-phosphinothricin are examples of 
other NPAAs of plant origin that are involved in plant defense (Bell 2003; Shaw 
et al. 1999; Schrauzer 2000; Kitajima and Chiba 2013; Tardito et al. 2012).

14.2.4.1.5 NPAAs with Aromatic Skeletons
Plants produce several NPAAs with aromatic skeletons, such as L-3,4- 
dihydroxyphenylalanine (L-DOPA) and m-tyrosine, that are involved in plant 
defense. L-DOPA is a compound with strong allelopathic activity. It is found in 
leaves and seeds of Mucuna pruriens (velvet bean) that has a nutritional quality 
similar to the soybean (Nishihara et al. 2005). L-DOPA acts as a precursor of many 
alkaloids, such as catecholamines and melanin, which are released into soils and 
inhibit the growth of nearby plants. L-DOPA is an important secondary metabolite 
for chemical defense against herbivores in plants (Huang et al. 2011; Van Alstyne 
et  al. 2006). Plants with high L-DOPA content are less prone to attack of small 
mammals or insects (Rehr et al. 1973). It is also a key chemical involving in sclero-
tization and melanization of insects which finally affects the development and 
immunity of insects (Gallot et al. 2010; Andersen 2010). The L-DOPA acts as a 
herbicide and suppresses the growth of several weed species such as Sinapis arven-
sis, Cirsium arvense, Papaver rhoeas, and Lamium amplexicaule (Topal and 
Kocaçalişkan 2006). m-Tyrosine is an example of another NPAA with aromatic 
skeletons with phytotoxic properties. It is exuded from the roots of fine fescue 
grasses and inhibits the growth of a wide range of neighboring plant and, therefore, 
grants a competitive advantage to fescue grasses (Bertin et al. 2007; Huang et al. 
2012). The toxicity of m-tyrosine is due to its misincorporation into cellular protein 
in place of protein amino acid phenylalanine (Gurer-Orhan et  al. 2006; Klipcan 
et  al. 2009). The m-tyrosine can also prevent the growth of bacteria including 
Escherichia coli and Bacillus species (Smith et  al. 1964; Aronson and Wermus 
1965).

14.2.4.1.6 NPAAs with Cyclic and Heterocyclic Skeletons
The 5-hydroxytryptophan (5-HTP) is found in the seeds of Griffonia simplicifolia 
and has been associated with the insecticidal properties (Janzen et  al. 1977). 
Homoproline, a lysine-derived NPAA, is a critical regulator of systemic acquired 
resistance (SAR) and basal immunity to bacterial infection in plants including 
Arabidopsis thaliana and Nicotiana tabacum (Navarova et  al. 2012; Vogel- 
Adghough et al. 2013). Homoproline signals the plants for effective biosynthesis of 
defense signal SA, accumulation of the phytoalexin camalexin, and expression of 
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defense-related genes. Mimosine and its derivatives (α-amino-β-(3-hydroxy-4-oxo-
1,4-dihydropyridin-1-yl)-propanoic acid), found in a leguminous Leucaena leuco-
cephala (Xuan et al. 2006), have a strong herbicidal impact on several plants namely 
Brassica rapa and Phaseolus vulgaris (Xuan et  al. 2006, 2016). Mimosine has 
insecticidal (Ishaaya et al. 1991) properties also and can inhibit the growth of first- 
instar larvae of Tribolium castaneum. β-(Isoxazolin-5-on-2-yl)-alanine (BIA), 
found in Pisum, Lens, Lathyrus, and Vicia plant species (Lambein et al. 1990), is a 
potent growth inhibitor of several eukaryotic organisms, such as yeasts; unicellular 
green algae; phytopathogenic fungi, such as Botrytis cinerea, Pythium ultimum, and 
Rhizoctonia solani; and higher plants (Schenk et al. 1991).
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15Plant Cell Wall: A Simple Physical Barrier 
or a Complex Defense Modulator – 
Exploring Its Dynamic Role at Plant- 
Fungus Interface

Sumanti Gupta and Amit Roy

Abstract
Plants are continuously threatened by many pathogens, among which fungal 
pathogen accounts for a measureable large quantity. Understanding of plant- 
fungal interaction is constantly coevolving along with the evolution of both the 
interacting partners. According to the previous scientific literature, many fungi 
are associated with a single host. Present chapter is focused at elaborating the 
role of plant cell wall in participating in the interaction. Host cell wall is the 
outermost barrier which any pathogen has to breach for successful invasion and 
establishment. Now the question is what is the role of host cell wall in regulating 
the pathogen’s infiltration or restriction? Present study explains the structural 
dynamism of cell wall which is believed to have functional relevance and is 
dependent on the behavior of the infecting fungi. Moreover, cell wall is also 
known to elicit immune signals that brings about transcriptional reprogramming 
and helps in mounting defense against attacking fungi. Additionally, cell wall- 
mediated responses trigger expressions of many antimicrobials which are regu-
lated by hormone signaling pathways. This study also sheds light on the impact 
of plant-fungal association on tritrophic interactions with other beneficial and 
pathogenic biotic components. But the role of host cell wall while dealing with 
multiple interacting partners is still elusive. Thus, the knowledge of cell wall 
glycobiology is expected to proceed further based on researches conducted at 
natural microenvironments.
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15.1  Introduction: Cell Wall Versus Immunity

The tug-of-war between plants and pathogens is endless. In order to defend oneself, 
both the interacting partners constantly opt for appropriate counter-reactive mea-
sures that are temporally and spatially regulated (Jones and Dangl 2006). But is this 
dynamic interplay between plants and its invading pathogens completely under-
stood? This is undoubtedly a million dollar question with a number of answers that 
are also coevolving with the up gradation of understanding of the plant-pathogen 
interaction chemistry.

However, there are few conceptions that have received unanimous scientific 
endorsements. The pathogens, being aggressive in nature, are believed to make the 
initial attempt of overpowering their host. The pathogen’s selection of host may or 
may not be specific. But, pathogens usually possess some conserved pathogen- 
associated molecular patterns or microbe-associated molecular patterns (PAMPs/
MAMPs) which are readily recognized by the pattern recognition receptors (PRRs) 
of the hosts. The PAMPs/MAMPs and PRR recognition event leads to activation of 
downstream defense reactions termed as pattern-triggered immunity (PTI) (Tsuda 
and Katagiri 2010). Sudden imbalance of ionic concentrations, increase in calcium 
ionic influxes, activation of MAP (mitogen-associated protein) kinases, phosphory-
lation of some targeted proteins, and secretion of antimicrobial compounds all lead-
ing to cell wall reinforcement of host at the site of attempted penetration are said to 
be the features of PTI (Buchanan et  al. 2015). Additionally, pathogen invasion 
induces the generation of some host components referred to as danger-associated 
molecular patterns (DAMPs) such as callose, glucans, fructans, etc. which are rec-
ognized as nonself and trigger similar set of downstream signals known as danger- 
triggered immunity (DTI) (Boller and Felix 2009). Both PTI and DTI provide basal 
resistance that non-specifically restrict a large number of pathogens at the site of 
penetration. But, a few diplomatic invaders evade the restrictions imposed by PTI/
DTI and secrete specific effector proteins which lead to effector-triggered suscepti-
bility (ETS). As counter-defensive measure, hosts secrete effector-specific R pro-
teins (resistance proteins) that directly or in combination with decoy/guardees 
interact with pathogen effectors and activate effector-triggered immunity (ETI). The 
features of ETI not only overlap with those of PTI but, being of much greater ampli-
tude, compensate for the shortfalls of the effect of PTI (Thomma et  al. 2011). 
However, the pathogen has to infringe through the initial physical barrier of host 
cell wall in order to successfully establish itself within the host (Malinovsky et al. 
2014). Thus it is logical to comment that cell wall has roles in allowing or restricting 
the invader. Present study shall explore the role of plant cell wall at plant-fungus 
interface.
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15.2  Structural Complexity Versus Functional Relevance

Cell wall is the initial physical obstacle that a pathogen has to break for successful 
establishment within the host. Thus, the structural complexity undoubtedly regu-
lates the function of the cell wall against phytopathogenic fungi. Occasionally the 
cell wall is covered with a protective layer called cuticle that the fungi breaks 
through by secreting cell wall-degrading enzymes which also act as important viru-
lence factors (Nuhse 2012). The load-bearing cellulose microfibrils are known to 
provide the structural integrity of the primary cell wall. They are synthesized by 
multimeric complexes made up of cellulose synthase catalytic subunits (CESAs) 
that are well characterized in Arabidopsis thaliana (Endler and Persson 2011). 
CESAs comprise of two subfamilies that synthesize cellulose in both primary 
(CESA 1, 3, 6) and secondary (CESA 4, 7, 8) cell walls with some crossovers that 
has still not been characterized (Endler and Persson 2011). However, perturbation 
of cell wall integrity due to fungal invasion which is diplomatic in case of biotrophic 
attack and destructive in case of necrotrophic attack, is often compensated by 
increased lignifications and downstream resistance responses offering the fact that 
structural cohesiveness of the outermost barrier is always under the alert surveil-
lance of plant defense armory (Caño-Delgado et al. 2003; Hernández-Blanco et al. 
2007). The structural integrity is also maintained by the hemicelluloses that are 
composed of beta 1–4-linked backbone of mannose, glucose, or xylose. They help 
in reinforcing the interactions with both cellulose and lignin (Endler and Persson 
2011). Among several hemicelluloses, xylans are found to be predominant in sec-
ondary cell walls where the beta 1–4 xylose residues are often substituted by arabi-
nosyl residues that are esterified with ferulic acid groups. These ferulate esters aid 
the cross-linking of xylans with lignins ultimately imparting enhanced structural 
rigidity (Harris and Stone 2008). Xylans are degraded by fungal xylanases and rec-
ognized as potential PAMPS by host PRRs in Lycopersicum esculentum (Ron and 
Avni 2004). In addition to feruloylation, xylans can also undergo acetylation and 
methylation that are specifically targeted by some fungal xylan degrading enzymes. 
Degraded xylan molecules perceived as DAMPS are known to trigger downstream 
defense signals (Pogorelko et al. 2013).

Pectin, a hetero complex polysaccharide, serves as the matrix of primary cell 
wall. Pectic backbones are comprised of either homogalacturonan (HGA) or rham-
nogalacturonan. Among these, HGA appears to be more relevant in defense signal-
ing since they undergo specific time-dependent chemical substitutions like methyl 
esterification and de-esterification at C6 position and acetylation at C2–C3 posi-
tions. Such chemical modifications provide a fine tune balance to the host plant 
according to its prevailing local requirements by forming calcium-mediated cross- 
linked gels and helping in cell adhesion (Cabrera et al. 2008). HGA is cleaved by 
fungal polygalacturonases (PG) into oligogalacturonide (OG) fragments that either 
aid pathogenic entry or act as nonself DAMPs and impart resistance during compat-
ible and incompatible interaction, respectively (Galletti et al. 2009). Interestingly, 
studies on endogenous pectin methyl esterases (PMEs) showed that they hold dual 
roles in degrading host HGA into OGs during fungal penetration and also trigger 
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host resistance response by aiding the formation of gel structures to bolster dam-
aged cell walls (Bethke et al. 2014). Such counterintuitive reports support the fact 
that apart from giving a structural integrity, the role of pectin in defense is quite 
dubious and still demands extensive case-specific experimentation to come to gen-
eralized conceptualizations. Lignin is the prime phenolic polymer of secondary cell 
walls that increases mechanical strength and water impermeability (Albersheim 
et al. 2010). Lignin not only provides structural firmness but also actively regulates 
defense responses by regulating phenylpropanoid pathway and the production of 
antimicrobial phytoalexins, stilbenes, coumarins, and flavonoids. Besides the key 
stress hormone that modulates defense, salicylic acid (SA) is also produced from 
the same biosynthetic pathway that produces lignin polymers (Lozovaya et  al. 
2007). But, the random incorporation of lignin monolignols to form complete lignin 
polymers, whether has any ecological implication to meet the protective demands of 
the host against attacking fungi, is still not clearly understood.

15.3  Plant-Fungus Interface

Immediately after contact the interaction between plant and fungus starts that 
largely depends on the topology, chemical composition, and molecular features of 
the contact areas of both the associated partners.

15.3.1  Fungal Penetration Strategy

15.3.1.1  Spore Properties
Spore texture, composition, and molecular properties influence the attachment, 
adhesion, and penetration of the pathogenic fungus within the plant. On the other 
side, most of the plants are coated with protective waxes that affect fungal attach-
ment, adhesion, and invasion. Biotrophic fungi of barley Blumeria graminis per-
ceive signals from the host surface and direct the growth of germ tube. Germination 
takes place only after the spore becomes proximate with the host surface stratum 
(Nielsen et  al. 2000). Spore attachment of necrotrophic pathogen of wheat 
Stagonospora nodorum takes place immediately after 30 s and depends on conidial 
and host surface-released glycoproteins (Newey et al. 2007). In case of hemibiotro-
phic pathogen of bean Colletotrichum lindemuthianum, the spore outer surface con-
sists of fibrillar porous layer abundant in carbohydrates that are required for 
attachment to hydrophobic layers and sense hard textured surface needed for appres-
soria formation (Rawlings et al. 2007). Besides in blast fungi Magnaporthe grisea, 
the fungal-released proteins of extracellular matrix (ECM) play a crucial factor in 
spore attachment, germ tube, and appressoria formation (Inoue et  al. 2007). 
Additionally, the conidial cell wall composition specially beta 1–3 glucan content is 
also important for pathogenicity as reported in Alternaria brassicicola (Joubert 
et  al. 2011) suggesting that cell wall integrity is central to protection of fungal 
pathogens against host antimicrobial compounds.
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15.3.1.2  Mode of Penetration
Following attachment, the germination of the fungal spore and penetration within 
the host interior appear to be a hallmark achievement for the successful fungus 
which occurs in different ways. Few fungi develop specialized structures that are 
capable of piercing the plant cuticular layer and cell wall of epidermal cells, while 
most of the others rely on their secreted cell wall-degrading enzymes (CWDE) that 
digest the host cell wall and facilitate their invasion (Łaźniewska et al. 2012). In a 
handful of cases, involvement of both specialized structures and CWDE occurs. In 
case of Magnaporthe grisea, it develops highly melanized dome-shaped appressoria 
that exerts tremendous physical force due to high turgor pressure and forces into the 
host epidermal cells (Choi et al. 2011). Rhizotonia solani forms complex appresso-
rial structures known as infection cushions (Pannecoucque and Höfte 2009). CWDE 
of fungi comprises of xylanases, exogalacturonases, pectin methylesterases, endo-
glucanases, and polysaccharide deacetylases (Carapito et  al. 2008). However the 
biotrophic fungi and necrotrophic fungi differ strategically in using their CWDEs. 
The biotrophs employ CWDE for loosening the cell wall of the host and allowing 
the fungi stealthily, while necrotrophs apply brute force and engage their CWDEs in 
totally digesting the cell wall of the host (Spanu and Kämper 2010). The function of 
CWDEs is largely dependent on the pH of the host cell sap (Niture and Pant 2007). 
Again some fungi like Fusarium oxysporum f.sp. ciceri and Puccinia striiformis 
f.sp. tritici rely on the natural openings such as breaches within root hairs, stomata, 
etc. of the host for entry (Gupta et al. 2009; Moldenhauer et al. 2006).

15.4  Role of Cell Wall in Elicitation

Previous researchers have well documented the role of cell wall in elicitation during 
fungal infection (Malinovsky et al. 2014). The following section shall brief how the 
elicitation mediated by cell wall changes trigger the defense signaling in the infected 
host plant.

15.4.1  Role of Cell Surface Chemistry and Topology

Hydrophobicity of host cell surface is undoubtedly perceived by most pathogenic 
fungi for successful attachment which is followed by germination of infecting struc-
tures and establishment of the pathogen within the host. Now the cell wall’s hydro-
phobic nature is largely imparted by the presence of the protective layer cuticle. 
Cuticle is composed of polyester cutin or cutan and epi and intracuticular waxes. 
Besides triterpenoids and phenyl propanoids are also present (Nawrath 2006). The 
structure and chemical composition of cuticle differ according to the microenviron-
ment and the nature of plant-fungal interaction as studied in Arabidopsis thaliana- 
fungi interaction (Kurdyukov et al. 2006). On the contrary, different fungal pathogen 
has developed different breaching mechanism which is capable of using the phyl-
loplane cuticle topology and chemistry for self-sustenance and pathogenicity. Even 
then, cuticle is known to hold dual roles where in one hand they serve as protective 
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layer and prevent fungal invasion, and on the other hand, their altered structure 
helps in release of some antimicrobials that lead to resistance against the attacking 
fungi (Mang et al. 2009).

Cell wall-associated trichomes also have prominent roles in plant-pathogen rec-
ognition. Similar to cuticle they also have twofold function but of disparate nature. 
They are known to trap fungal spores and secrete specialized exudates rich in sec-
ondary metabolites having antifungal activity (Nonomura et  al. 2009). Besides, 
studies on Nicotiana tabacum have revealed the expression of several pathogenesis- 
related proteins (PR5 and PR14) and lipid transfer protein (LTP) in leaf trichomes 
during Peronospora tabacina attack (Harada et al. 2010). Conversely, the spatial 
organization and topology of trichomes are sensed by some group of fungi like 
Fusarium graminearum and Colletotrichum acutatum infecting strawberry and 
Arabidopsis thaliana, respectively (Salazar et al. 2007; Skadsen and Hohn 2004). 
Moreover, the high density of trichomes increase the humidity of the host surface 
resulting in colonization of many pathogenic fungi that mark specific weak areas in 
and around the trichomes as probable entry gates (Calo et al. 2006).

15.4.2  Role of Wall-Degrading Enzyme Inhibitors

Fungal CWDEs are important molecules which they categorically use to promote 
their growth and establishment in planta (Łaźniewska et al. 2012). In opposition, 
host plants also activate immune responses that restrict the devastations caused by 
fungal CWDEs. Degradation of the primary component of cell wall pectin, the 
homogalacturonan by polygalacturonases (PGs), results in release of fragments of 
oligogalacturonides (OGs) that are important DAMP molecules. Studies on 
Arabidopsis thaliana during Botrytis cinerea attack revealed enhanced expression 
of defense proteins like PAD3 (phytoalexin deficient 3) and PGIP (polygalacturonase- 
inhibiting protein) due to release of OGs from infected cell wall of host (Galletti 
et al. 2009). Additionally there exist many other CWDE inhibitors of infected hosts 
that have been reviewed by Lagaert et  al. (2009). Pepper pectin methylesterase 
inhibitor protein (CaPME11) exhibits antifungal activity against Fusarium oxyspo-
rum f.sp. matthiole, Alternaria brassicicola, and Botrytis cinerea (An et al. 2008). 
Ongoing researches on fungal enzyme verses host inhibitor projects a constant evo-
lution of both the interacting cognate proteins that are subjected to dynamic eco-
logical selection pressure (Beliën et al. 2007).

15.4.3  Host Cell Wall Reinforcement Strategies

The most common counter response of the infected host against attempted penetra-
tion of the fungal pathogen is to reinforce its cell wall and prevent further fungal 
ingress. Reinforcement is achieved by deposition of a number of compounds such as 
callose, phenolics, lignin, cellulose, pectin, suberin lipids, hydroxyproline-rich gly-
coproteins (HRGPs), and peroxidases (Schmelzer 2002). The nature and chemical 
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constituent of the deposition is dependent on a particular pathosystem and is tempo-
rally regulated. For example, Septoria tritici infecting wheat induces callose deposi-
tion, whereas accumulation of syringly rich lignins is found in wheat during Puccinia 
graminis f.sp. tritici attack (Shetty et al. 2009; Menden et al. 2007). Callose (beta 1–3 
glucan) deposition is one of the most important reinforcement molecule deployed by 
the host. It leads to papillae formation at the site of attempted penetration and restricts 
a wide range of fungi. The key enzyme of callose synthesis is callose synthase PMR4. 
PMR4 is known to regulate salicylic acid and PR1 protein expression responses via 
NPR1 expression in Arabidopsis thaliana (Dong et al. 2008). Interestingly, in Cicer-
Fusarium oxysporum f.sp. ciceri interaction, the degradation of callose was found to 
be linked to enhanced susceptibility indicating that callose deposition and/or degra-
dation is often governed by the invading fungus also that diplomatically reprograms 
the host machinery for its self-sustenance (Gupta et al. 2010).

Lignins are also known to form cell wall apposition and provide penetration 
resistance in wheat during powdery mildew attack (Bhuiyan et al. 2009). Lignin 
content is also regulated by phenyl propanoid pathway and jasmonic acid (Taheri 
and Tarighi 2010). HRGPs are also important cell wall strengthening compounds 
that are released in the apoplast in the form of monomers that undergo cross-linking 
with the help of H2O2 and class III peroxidases, thus forming thick-walled network 
of extensin. These extensins not only serve as anchor for host cell wall lignification 
but also cause agglutination of the infecting fungi (Almagro et al. 2009) (Fig. 15.1).

Fig. 15.1 Schematic diagram representing the role of cell wall in regulating plant defense against 
pathogenic fungi
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15.4.4  Role of Peptide Hormones

Peptide hormones are a class of new entrants in the list of plant hormones. Till date 
few peptide hormones have been identified that are known to regulate diverse roles 
starting from controlling cell differentiation and growth to inducing defense signal-
ing (Ryan et al. 2002). In the present section, light will be shed on the role of syste-
min and rapid alkalinization factor (RALF) in controlling defense in particular. 
Systemin was initially identified in tomato leaves as a result of systemic wound 
response during Manduca sexta pest infestation (Pearce et  al. 1991). Follow-up 
researches have identified many systemins from other solanaceous as well as non- 
solanaceous member (Ryan et al. 2002). But, their structure and sequence homol-
ogy greatly differ across different plant species suggesting a need to look through 
as, why nature has retained the functional conservation of systemin, in spite of its 
structural dissimilarity across diverse species. Wounding is a response that is deeply 
associated with the architectural change in the cell wall. Fungal penetration defi-
nitely induces wounding, although there has been no report of plant systemins asso-
ciated with fungal penetration till date, which demands extensive research ahead on 
this field.

RALFs were reported from tobacco known to cause rapid alkalinization of the 
medium (Pearce et al. 2001). This medium alkalinization is reported to induce MAP 
kinases in vitro in tobacco and tomato cell cultures (Pearce et al. 2001). Systemins 
also induce medium alkalinity, but RALFs are identified to be larger components 
having signaling role other that regulating defense (Ryan et  al. 2002). Although 
RALF has been reported to have growth and development regulatory roles in 
tobacco, its exact role in regulating defense is still not proven. Interestingly, in 
Cicer-Fusarium oxysporum f.sp. ciceri case study, RALF was reported to be induced 
in resistant plants during fungal invasion predicting its role in somehow adversely 
affecting the fungal spread and establishment within the incompatible plant (Gupta 
et al. 2009). However, the exact mode of action of this novel molecule needs to be 
elaborated.

15.5  Cell Wall Influencing Transcriptional Reprogramming 
and Hormonal Regulation

The role of cell wall in transcriptional reprogramming during fungal attack is indeed 
very important. Although it is well implied but not very clearly correlated in previous 
studies, that the cell wall being the external and first barrier to be encountered by the 
attacking fungi surely transmits a sense of danger to its interior parts. Transmission 
of the danger alarms leads to the activation of cell wall fortification strategies and 
expression of antimicrobials all of which are controlled by the transcriptional repro-
gramming (Malinovsky et  al. 2014). Callose deposition is coupled with late PTI 
responses. Besides, attempted penetration of fungal pathogen causes an obvious 
imbalance in cellular ionic concentrations thus culminating in generation and accu-
mulation of reactive oxygen species (ROS) at the site of invasion (Kobayashi et al. 
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2007). This ROS accumulation causes downstream transcriptional upregulation lead-
ing to calcium spiking, MAP kinase, and calcium-dependent protein kinase expres-
sion (CDPK), which are influenced by the changes in cell wall architecture and 
integrity (Boudko 2012; Boudsocq et al. 2010). Among the genes related with cell 
wall defense, penetration genes (PEN) are most widely characterized. PEN1 contains 
a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) 
domain and encodes membrane-associated syntaxin SYP121/PEN1. It is essential 
for papillae formation and helps in delivering the cell wall reinforcement material to 
the appropriate site of attack (Assaad et al. 2004). PEN2 gene encodes glycoside 
hydrolase that participates in peroxidase-mediated antifungal production, while 
PEN3 gene-encoding ABC (ATP-binding cassette) transporters deliver the com-
pound to the necessary site of attempted penetration (Stein et al. 2006).

Although indirect, the role of cell wall in modulating hormonal expression dur-
ing fungal attack is also noteworthy. Many fungi like Fusarium sp. rely on natural 
opening like stomata or breaches adjoining root hairs for entering the host. Thus, in 
order to prevent fungal entry, the host guard cell wall modifies accordingly, decreases 
the osmotic potential, and initiates abscisic acid (ABA)-mediated stomatal closure 
(Ton et al. 2009). Besides, callose synthase that affects the deposition of callose is 
known to trigger NPR1-mediated SA response in Arabidopsis thaliana (Dong et al. 
2008). Similarly lignins that are products of phenyl propanoid pathway are regu-
lated by jasmonic acid pathway (Taheri and Tarighi 2010).

15.6  Plant-Fungus Interaction and Its Impact on Other Biotic 
Interactions at Different Trophic Levels: Is the Role 
of Host Cell Wall Defined During Multiple Interactions?

Fungus is one of the most commonly occurring plant-associated organisms with a 
considerable diversity comprising 120,000 described species. According to 
Hawksworth’s (1991) extrapolation, there are 1.5 million fungal species on earth, 
most of which consume plant matter. The ratio of fungi to plant species is 5:1 con-
sidering approximately 300,000 plant species on earth. Thus, it is likely that a plant 
is associated with more than five fungi (Arnold et al. 2007; Jumpponen and Jones 
2010). With such expansive species diversity, it is understandable that plant-fungal 
interactions are dynamic and ecologically complex (Southworth 2012).

It is presumed that all plants in the ecosystem are symbiotic with fungal endo-
phytes that reside in plant tissues (Petrini 1996). These symbiotic association aids the 
host plant in gaining fitness benefits such as conferring biotic and abiotic stress toler-
ance and inducing growth and development. For example, class 2 fungal endophytes 
play a crucial role in plant adaptation to various abiotic stresses such as drought, 
salinity, and temperature (Redman et al. 2001; Márquez et al. 2007; Rodriguez et al. 
2009, 2008). However, in the present section, we confine ourselves to fungi-medi-
ated biotic interactions only. From a plant’s perspective, fungi can mediate both ben-
eficial and harmful interactions. In the following section, we shall discuss few of 
such naturally occurring tritrophic interactions mediated by fungi (Fig. 15.2).
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15.6.1  Fungi as Mediators of Symbiotic Trophic Associations

Plants endorse different mutualistic associations where they provide nutritional or 
structural resources to their partners and obtain essential components related to their 
growth. Otherwise, there is a tremendous competition of utilizable carbon sources 
in the soil among soil organisms. Plants often produce excess photosynthate in pres-
ence of adequate nitrogen and release some part of it into the rhizosphere (Hikosaka 
2005). These nutritional conditions provide opportunity for symbiosis between 
plants and fungi; plants require nitrogen, and fungi need accessible carbon, which 
they are unable to scavenge efficiently from soil (Smith et al. 2009). There are sev-
eral examples of plant-fungus symbiotic interactions. Many of these fungal symbi-
otic partners, including mycorrhizal fungi, are obligate in nature and are therefore 
unable to survive without a plant host. In this symbiotic association, fungus receives 
carbon, in form of plant-derived sugar, and in return, they provide their host with the 
limiting soil nutrients such as nitrogen and/or phosphate. Several gene expression 
and transporter-staining experiments provide evidence for such mutual interactions 
(Fellbaum et al. 2012; Jones et al. 2009; Balestrini and Lanfranco 2006; Karandashov 
and Bucher 2005; Guether et al. 2009).

Metarhizium is an insect pathogenic, root colonizing fungus. They are not obli-
gate biotrophs like mycorrhizal fungi. Their survival also depends on the reciprocal 
nutrient exchange with a host plant, whereby the fungus receives carbon in exchange 
for the insect-derived nitrogen (Hajek and St. Leger 1994; Behie et al. 2017; Behie 
and Bidochka 2014). They infect soilborne insects and transfer the insect-derived 
nitrogen to the host plants via fungal hyphae for the plant-derived photosynthate 
(Behie et  al. 2017). This serves as a classic example of a secondary interaction 

Fig. 15.2 Simplified 
pictorial representation of 
interaction dynamics of 
plant and its associated 
organisms including 
insects, fungus (harmful + 
beneficial), and parasite/
predators (Model adapted 
from Lamit and Gehring 
2012)
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between plant and insect mediated by fungus where insects become the prey and 
plants are provided with insect-derived nitrogen by the entomopathogenic fungus.

Occasionally, fungus benefits the host plant through cross-compartment signal-
ing in both directions such as shoot to root and vice versa. For instance, aboveg-
round inoculation with an incompatible race of the hemibiotrophic fungus Fusarium 
oxysporum (Foc race 1) on Cavendish banana enhances resistance of the host plant 
to a compatible strain of fungus (Foc race 4) when the strain is subsequently inocu-
lated to the roots (Wu et  al. 2013). The enhanced resistance, shoot to root SAR 
(systemic acquired resistance), is associated with the higher levels of salicylic acid 
(SA) and other defense-related genes including PR-1 (pathogenesis-related pro-
tein). Conversely, the hemibiotrophic fungus, Colletotricum graminicola, strongly 
suppresses the same pathogen growth when it is inoculated in the leaves after 6 days 
of preinoculation of roots in maize plants. Transcriptional studies confirmed the 
significant increase in the expression of ABA (abscisic acid), SA, and other genes 
associated with the biosynthesis of benzoxazinoids (DIMBOA) and PR proteins 
until 4 dpi (days post inoculation) (Balmer et al. 2013) indicating an active root to 
shoot SAR. Moreover, Leath et al. (Leath and Byers 1977) reported reduced pea 
aphid densities on the forage legumes infected by Fusarium in roots.

Interestingly, plant-fungal interaction can also modulate herbivore population by 
attracting the natural enemies. Plant volatile compounds facilitate the host searching 
by the natural enemies (Turlings et al. 1991a, b; Kessler and Baldwin 2001). The 
plant-emitted chemical signals may originate from various sources like the host 
plant, herbivore-damaged plant, fungus-infected plants, etc.. For example, infection 
by the fungus Alternaria brassicae on Brassica rapa (mustard) seedlings induces 
release of volatile cues from glucosinolate degradation (Doughty et al. 1996). The 
white mold fungus, Sclerotium rolfsii, infected Arachis hypogaea (groundnut) plant 
releases E-4, 8-dimethyl-1, 3, 7-nonatrine, methyl salicylate, etc. (Cardoza et  al. 
2002). Interestingly, some herbivores find ways to escape natural enemies by evolv-
ing mechanisms to reduce volatile cues from the damaged plants. Hence, in addition 
to the host plants, the parasitoids feeding upon herbivores need to depend on other 
sources for volatile cues to locate their prey from faraway. Fungus-infected plants 
not only provide valuable cues to herbivores for host finding and oviposition, but 
they also emit volatiles that are highly attractive to parasitoids. Studies even revealed 
that there is a difference between the volatile emission profiles from the host plant 
after compatible or incompatible interactions with the fungal pathogens (Huang 
et al. 2003). Moreover, pathogen in combination with herbivory shows a different 
emission profile from the host (Cardoza and Tumlinson 2006), which may serve as 
a valuable cue for the natural enemies such as parasitoid wasps like Cotesia mar-
giniventris. For instance, the volatile blend produced by beet armyworm (BAW) and 
white mold-infected groundnut plant contains methyl salicylate and fungus- 
produced 3-octanone, in addition to all the volatiles produced from the healthy 
groundnut plant alone (Cardoza et al. 2002). This infected groundnut plant exposed 
to BAW plants is more attractive to C. marginiventris (Cardoza et al. 2003) compare 
to healthy plants.
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15.6.2  Fungi as Inducers of Pathogenic Trophic Associations

There are a number of pathogenic fungi that induce or facilitate other harmful inter-
actions with plants (i.e., promote egg laying of herbivores) in addition to the dam-
age they cause. In other words, when a pathogen attacks, the plant’s response to 
those attacks affects the oviposition preference of different herbivores. There are 
many reports of higher oviposition of herbivores on pathogen-infected host plants in 
different pathosystems. Helicoverpa armigera (Hübner) adult females were reported 
to deposit more eggs on tomato leaves inoculated with root fungal endophyte, 
Acremonium strictum (Jallow et  al. 2008). Similarly, stem-boring weevil, 
Apiononopordi (Coleoptera: Apionidae), prefers Puccinia punctiformis (rust fun-
gus, Uredinales)-infected shoots of its host gray-green perennial herb, Cirsium 
arvense (Asteraceae) (Friedli and Bacher 2001). Abreha et al. (2015) showed that 
susceptible potato cultivar after fungus infection is preferred by the generalist moth, 
Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Females were found to 
lay more eggs on the Phytophthora infestans inoculated potato plant over uninocu-
lated ones indicating a preference of Spodoptera females for diseased plants over 
healthy plants. There was no significant difference on the larval performance after 
feeding on the infested leaves. However, white mold fungus, Sclerotium rolfsii- 
infected peanut plants are more preferred by BAW, Spodoptera exigua. BAW grows 
better on the mold-infected plants due to higher level of soluble sugars and lower 
levels of soluble phenolics (Cardoza et  al. 2003). Phytophthora plurivora (root 
pathogen) enhances the performance of gypsy moth (Lymantria dispar). However, 
herbivores do not always prefer to lay eggs on leaves infected with pathogens. For 
example, BAW avoided oviposition on powdery mildewed (Podosphaera pannosa) 
leaves of Rosa chinensis (Yang et al. 2013), leaf beetle Phaedon cochleariae does 
not prefer to oviposit on Alternaria brassicae-infested chinese cabbage (Rostas and 
Hilker 2002), and Cassida rubiginosa, leaf-feeding beetle, prefers laying eggs on 
healthy plants over Phoma destructiva-inoculated Cirsium arvense (Kruess 2002).

There is another interesting dimension in the plant-fungus-insect interaction 
where insect-fungus mutualistic relationships help them in successful colonization 
in host plant, for example, bark beetles (Coleoptera: Curculionidae, Scolytinae) 
ectosymbioses with fungi (Harrington 2005; Six 2012) for successful colonization 
on the host plant (Fig.  15.3), to be more specific, the western pine beetle 
(Dendroctonus brevicomis LeConte) symbiosis with two symbiotic fungal partners, 
Entomocorticium sp. (Basidiomycota) and Cerato cystiopsis brevicomi 
(Ascomycota) (Paine and Birch 1983; Hsiau and Harrington 1997). The two fungi 
carried in a prothoracic mycangium were found only in female beetles. During tree 
colonization, females inoculate the tree with their symbiotic fungi and oviposit in 
the tree’s phloem layer. Larvae feed and grow initially on a combination of fungi 
and phloem. However, in the second instar, larvae start feeding on the nutrient-poor 
bark (Miller and Keen 1960), which is hypothesized to be mediated by the symbi-
otic fungi. This transition is crucial for larval survival, as they require both bark and 
phloem in the diet for development (Valiev et  al. 2009). This is an example of 
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symbiosis between insect and fungus since the fungi gain transportation and entry 
to the host trees by insects while, in return, the fungi provide nutritional benefit to 
the growing larvae.

Thus, plant-fungal-herbivore interactions are highly variable with no broad gen-
eralizations at present. However, these ecologically significant findings demonstrate 
the impact of phytopathogen (i.e., fungi)-induced alteration in plant chemistry 
(including volatile emission profile) influencing the plant-insect interactions, not 
only at the second trophic level but also the third level.

But, in order to mediate such tritrophic interactions, the plant cell wall definitely 
has a specific role in allowing different combinations of these multiple agents (sym-
biotic/pathogenic fungi along with beneficial insect/harmful herbivore) within 
itself. How the host cell wall perceives and channelizes the entire signaling that 
regulates the entry or exit of multiple organisms simultaneously or in sequence 
within the resident host is still a gross mystery. But, since penetration and invasion 
are a critical event for establishment of a symbiont or pathogen, the role of host cell 
wall is fundamental, which needs to be extensively studied that too under natural 
ecological microenvironment.

15.7  Challenges of Cell Wall Biology Ahead

According to the thumb rule of nature, cell wall is a universal barrier, which is suf-
ficient to restrict a wide range of fungal pathogens. But what still remains unan-
swered are:

 1. How does the cell wall of a particular host restrain so many wide range of fungal 
pathogens that constantly try to threaten it?

Fig. 15.3 Plant-fungus-insect tritrophic interaction. (a) Western pine beetle feed on symbiotic 
fungi during early phase of larval development on ponderosa pine bark. Fungi are visible as white 
mass in larval tunnel. (b) Fungal spores line the pupal chamber for incorporation into the beetle 
mycangia after metamorphosis. (c) Pseudo-chambers created by Bracewell et al. showed one pupa 
in each chamber (Adapted with permission from Bracewell and Six 2015)
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 2. The PAMP/DAMP versus PRR recognition is primarily cell membrane centric 
and under transcriptional regulation. How does cell wall specifically function 
during PTI/ETI signaling?

 3. It is believed that the initial fungal penetration is manifested within host interior 
by changes in ROS level. Is the same signal transmitted systemically to distant 
parts? What roles do the distant cell walls have? Do they also have any memory 
that helps in priming?

 4. How is the chemical glycobiology of cell wall regulated according to functional 
demands more importantly during gradual invasion and establishment of the fun-
gal pathogen? Does the role of host cell wall become redundant after pathogen 
establishes itself within the host?

 5. How does the cell wall of a host cater to multiple invaders?

Apart from the above, there probably lie many more questions in scientific minds 
that are likely to receive satisfactory answers as the study of cell wall biology pro-
ceeds. On the contrary, many more queries will also come up in the near future that 
shall pave the path of new and novel researches ahead.
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